Document Type : Research Paper

Author

Department of Forestry, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Iraq.

Abstract

Allelopathic effects of Rosmarinus officinalis (rosemary) have been investigated on 3 weeds: Vicia sativa, Vicia ervila, Hordeum spontaneum and one important cereal crop Triticum aestivum L. (bread wheat). A Laboratory experiment was laid out and 0.00, 1.00, 1.50 and 2.00 mg/ ml solutions of the ethanolic leaf extract were applied each with 5 replications. After 2 weeks, several germination indices and seedling growth characters were recorded. The chemical constituent of the extract was identified with GC–MS analysis. Eucalyptol, camphor, terpinene, linalool, ferruginol were identified as a dominant allelochemicals. A significant decrease was recorded in the germination % (G %) and germination velocity (GV) of Vicia ervilia, Vicia sativa and Hordeum spontaneum. While, seedling vigor index (SVI) was decreased significantly in Hordeum spontaneum and Triticum aestivum L. Although, a significant increase observed only in the root and shoot length of Triticum aestivum L., but it decreased significantly in the other parameters. A significant reduction in the seedling biomass of Vicia ervilia and Hordeum spontaneum was recorded. A remarkable increase was recorded in the seedling moisture content of Hordeum spontaneum and Triticum aestivum L. Generally, it can be concluded that rosemary exhibited a negative allelopathic effects on the weeds that can be used as a herbicide, but a positive promoter effect on Triticum aestivum L.

Keywords

Main Subjects

  1. Inderjit, & Duke, S. O. (2003). Ecophysiological aspects of allelopathy. Planta, 217, 529-539. https://doi.org/10.1007/s00425-003-1054-z
  2. Xiao, Y., Tan, J., Yu, Y., Dong, J., Cao, L., Yao, L., ... & Yan, Z. (2024). Phytotoxic Effects and Potential Allelochemicals from Water Extracts of Paulownia tomentosa Flower Litter. Agronomy, 14(2), 367. https://doi.org/10.3390/agronomy14020367
  3. Kruse, M., Strandberg, M., & Strandberg, B. (2000). Ecological effects of allelopathic plants-a review. NERI Technical Report, 315. http://www.dmu.dk/
  4. Singh, H. P., Batish, D. R., & Kohli, R. K. (2003). Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Critical Reviews in Plant Sciences, 22(3-4), 239-311. https://doi.org/10.1080/713610858
  5. Scavo, A., & Mauromicale, G. (2021). Crop allelopathy for sustainable weed management in agroecosystems: Knowing the present with a view to the future. Agronomy, 11(11), 2104. https://doi.org/10.3390/agronomy11112104
  6. Khan, T., Zahid, M., Asim, M., Iqbal, Z., Choudhary, M. I., & Ahmad, V. U. (2002). Pharmacological activities of crude acetone extract and purified constituents of Salvia moorcraftianaPhytomedicine, 9(8), 749-752. https://doi.org/10.1078/094471102321621386
  7. Šućur, J. O. V. A. N. A., Popović, A. L. E. K. S. A. N. D. R. A., Petrović, M. I. L. O. Š., Anačkov, G. O. R. A. N., Malenčić, D. J. O. R. D. J. E., & Prvulović, D. E. J. A. N. (2015). Allelopathic effects and insecticidal activity of Salvia sclarea L. Studia Universitatis Babes-Bolyai Chemia, 60(1), 253-264. [Google Scholar]
  8. Rowshan, V., & Karimi, S. (2013). Essential oil composition and allelopathic affect of Salvia macrosiphon on Zea mays L. International Journal of Agriculture, 3(4), 788. [Google Scholar]
  9. Erez, M. E., & Fidan, M. (2015). Allelopathic effects of sage (Salvia macrochlamys) extract on germination of Portulaca oleracea seeds. Allelopathy journal35(2), 285-296. [Google Scholar]
  10. Bajalan, I., Zand, M., & Rezaee, S. (2013). Allelopathic effects of aqueous extract from Salvia officinalis on seed germination of barley and purslane. [Google Scholar]
  11. Bisio, A., Fraternale, D., Giacomini, M., Giacomelli, E., Pivetti, S., Russo, E., ... & De Tommasi, N. (2010). Phytotoxicity of Salvia spp. exudates. Crop Protection, 29(12), 1434-1446. https://doi.org/10.1016/j.cropro.2010.08.002
  12. Maccioni, A., Santo, A., Falconieri, D., Piras, A., Farris, E., Maxia, A., & Bacchetta, G. (2020). Phytotoxic effects of Salvia rosmarinus essential oil on Acacia saligna seedling growth. Flora, 269, 151639. https://doi.org/10.1016/j.flora.2020.151639
  13. El Mahdi, J., Tarraf, W., Ruta, C., Piscitelli, L., Aly, A., & De Mastro, G. (2020). Bio-herbicidal potential of the essential oils from different Rosmarinus officinalis L. chemotypes in laboratory assays. Agronomy10(6), 775. https://doi.org/10.3390/agronomy10060775
  14. Najem, A. M., Abed, I. J., & AL-Haidari, A. M. D. (2016). Evaluation the activity of Rosemary (Rosmarinus officinalis) essential oil against some cyanobacteria. Iraqi Journal of Biotechnology, 15(1). [Google Scholar]
  15. Macias, F. A., Molinillo, J. M., Varela, R. M., & Galindo, J. C. (2007). Allelopathy—a natural alternative for weed control. Pest Management Science: Formerly Pesticide Science, 63(4), 327-348. https://doi.org/10.1002/ps.1342
  16. Jabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57-65. https://doi.org/10.1016/j.cropro.2015.03.004
  17. Pavela, R., & Benelli, G. (2016). Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends in Plant Science, 21(12), 1000-1007. https://doi.org/10.1016/j.tplants.2016.10.005
  18. Sulaiman Rashid, T., Kazm Mahmud, K., Kakakhan Awla, H., & Anwar Qadir, S. (2024). Tomato Seed Treatment and Germination Responses to Selected Plant Extracts. Journal of Crop Health, 76(5), 1137-1146. https://doi.org/10.1007/s10343-024-01015-6
  19. ISTA, Z. (1999). International rules for seed testing. Seed Sci. Technol.27(Supplement), 333. [Google Scholar]
  20. Qadir, S. A., Khursheed, M. Q., & Huyop, F. Z. (2016). In vitro culture characters of some bread wheat genotypes under drought stress condition. Ziraat Fakültesi Dergisi, 30, 11-16. https://www.cabidigitallibrary.org/doi/full/10.5555/20173246037
  21. Qadir, S. A., Sabr, H. A., & Younis, A. M. (2022). Growth performance of black poplar (Populus nigra) Under drought condition and sewage water irrigation. Basrah Journal of Agricultural Sciences35(1), 21-34. https://doi.org/10.37077/25200860.2022.35.1.02.
  22. Micić, D., Đurović, S., Riabov, P., Tomić, A., Šovljanski, O., Filip, S., ... & Blagojević, S. (2021). Rosemary essential oils as a promising source of bioactive compounds: Chemical composition, thermal properties, biological activity, and gastronomical perspectives. Foods, 10(11), 2734. https://doi.org/10.3390/foods10112734
  23. Saviuc, C., Gheorghe, I., Coban, S., Drumea, V., Chifiriuc, M. C., Banu, O., ... & Lazăr, V. E. R. O. N. I. C. A. (2016). Rosmarinus officinalis essential oil and eucalyptol act as efflux pumps inhibitors and increase ciprofloxacin efficiency against Pseudomonas aeruginosa and Acinetobacter baumannii MDR strains.  Biotechnol. Lett., 21(4), 11783.
  24. Giarratana, F., Muscolino, D., Ragonese, C., Beninati, C., Sciarrone, D., Ziino, G., ... & Panebianco, A. (2016). Antimicrobial activity of combined thyme and rosemary essential oils against Listeria monocytogens in Italian mortadella packaged in modified atmosphere: Thyme & Rosemary EOs vs L. monocytogenes. Journal of Essential oil Research, 28(6), 467-474. https://doi.org/10.1080/10412905.2016.1165744
  25. Atti-Santos AC, Rossato M, Pauletti GF, Rota LD, Rech JC, Pansera MR, Agostini F, Serafini LA, Moyna P (2005) Physico-chemical evaluation of Rosmarinus officinalis essential oils. Braz Arch. Biol Technol 48:1035–1039. https://doi.org/10.1590/S1516-89132 005000800020
  26. Tawfeeq, A. A., Mahdi, M. F., Abaas, I. S., & Alwan, A. H. (2018). Isolation, quantification, and identification of rosmarinic acid, gas chromatography-mass spectrometry analysis of essential oil, cytotoxic effect, and antimicrobial investigation of Rosmarinus officinalisAsian J. Pharm. Clin. Res., 11(6), 126-32. https://doi.org/10.22159/ajpcr.2018.v11i6.24134
  27. Christopoulou, S. D., Androutsopoulou, C., Hahalis, P., Kotsalou, C., Vantarakis, A., & Lamari, F. N. (2021). Rosemary extract and essential oil as drink ingredients: An evaluation of their chemical composition, genotoxicity, antimicrobial, antiviral, and antioxidant properties. Foods, 10(12), 3143. https://doi.org/10.3390/foods10123143
  28. Elghobashy, R. M., El-Darier, S. M., Atia, A. M., & Zakaria, M. (2024). Allelopathic Potential of Aqueous Extracts and Essential Oils of Rosmarinus officinalis and Thymus vulgaris L. Journal of Soil Science and Plant Nutrition, 24(1), 700-715. https://doi.org/10.1007/s42729-023-01576-x
  29. Kucera, B., Cohn, M. A., & Leubner-Metzger, G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Science Research, 15(4), 281-307. https://doi.org/10.1079/SSR2005218.
  30. Finkelstein, R.R., 2010. The role of hormones during seed development and germination. In: Plant hormones: biosynthesis, signal transduction, action. 549-573. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-2686-7.
  31. Ghanizadeh, H., Lorzadeh, S., & Aryannia, N. (2014). Effect of weed interference on Zea mays: growth analysis. Weed Biology and Management, 14(2), 133-137.14(2), 133-137. https://doi.org/10.1111/wbm.12041.
  32. Rahimi, M., Bidarnamani, F., & Shabanipoor, M. (2015). Effects of allelopathic three medicinal plants on germination and seeding growth of Portulaca oleracea. http://researchtrend.net/bf12/239%20F.
  33. Fischer, N. H., Tanrisever, N., & Williamson, G. B. (1988). Allelopathy in the Florida scrub community as a model for natural herbicide actions. https://doi.org/10.1021/bk-1988-0380.ch015.
  34. Azizi, M., & Fuji, Y. (2005, July). Allelopathic effect of some medicinal plant substances on seed germination of Amaranthus retroflexus and Portulaca oleraceae. In: I International Symposium on Improving the Performance of Supply Chains in the Transitional Economies 699. 61-68. https://doi.org/10.17660/ActaHortic.2006.699.5
  35. Bachheti, A., Sharma, A., Bachheti, R. K., Husen, A., & Pandey, D. P. (2020). Plant allelochemicals and their various applications. Co-evolution of secondary metabolites, 441-465. https://doi.org/10.1007/978-3-319-96397-6_14
  36. Abrahim, D., Braguini, W. L., Kelmer-Bracht, A. M., & Ishii-Iwamoto, E. L. (2000). Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. Journal of Chemical Ecology, 26, 611-624.https://doi.org/10.1023/A:1005467903297
  37. Verdeguer, M., Sánchez-Moreiras, A. M., & Araniti, F. (2020). Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants, 9(11), 1571. https://doi.org/10.3390/plants9111571
  38. Zunino, M. P., & Zygadlo, J. A. (2004). Effect of monoterpenes on lipid oxidation in maize. Planta, 219, 303-309. https://doi.org/10.1007/s00425-004-1216-7