Document Type : Research Paper
Author
Department of Forestry, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Iraq.
Abstract
Allelopathic effects of Rosmarinus officinalis (rosemary) have been investigated on 3 weeds: Vicia sativa, Vicia ervila, Hordeum spontaneum and one important cereal crop Triticum aestivum L. (bread wheat). A Laboratory experiment was laid out and 0.00, 1.00, 1.50 and 2.00 mg/ ml solutions of the ethanolic leaf extract were applied each with 5 replications. After 2 weeks, several germination indices and seedling growth characters were recorded. The chemical constituent of the extract was identified with GC–MS analysis. Eucalyptol, camphor, terpinene, linalool, ferruginol were identified as a dominant allelochemicals. A significant decrease was recorded in the germination % (G %) and germination velocity (GV) of Vicia ervilia, Vicia sativa and Hordeum spontaneum. While, seedling vigor index (SVI) was decreased significantly in Hordeum spontaneum and Triticum aestivum L. Although, a significant increase observed only in the root and shoot length of Triticum aestivum L., but it decreased significantly in the other parameters. A significant reduction in the seedling biomass of Vicia ervilia and Hordeum spontaneum was recorded. A remarkable increase was recorded in the seedling moisture content of Hordeum spontaneum and Triticum aestivum L. Generally, it can be concluded that rosemary exhibited a negative allelopathic effects on the weeds that can be used as a herbicide, but a positive promoter effect on Triticum aestivum L.
Keywords
Main Subjects
- Inderjit, & Duke, S. O. (2003). Ecophysiological aspects of allelopathy. Planta, 217, 529-539. https://doi.org/10.1007/s00425-003-1054-z
- Xiao, Y., Tan, J., Yu, Y., Dong, J., Cao, L., Yao, L., ... & Yan, Z. (2024). Phytotoxic Effects and Potential Allelochemicals from Water Extracts of Paulownia tomentosa Flower Litter. Agronomy, 14(2), 367. https://doi.org/10.3390/agronomy14020367
- Kruse, M., Strandberg, M., & Strandberg, B. (2000). Ecological effects of allelopathic plants-a review. NERI Technical Report, 315. http://www.dmu.dk/
- Singh, H. P., Batish, D. R., & Kohli, R. K. (2003). Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Critical Reviews in Plant Sciences, 22(3-4), 239-311. https://doi.org/10.1080/713610858
- Scavo, A., & Mauromicale, G. (2021). Crop allelopathy for sustainable weed management in agroecosystems: Knowing the present with a view to the future. Agronomy, 11(11), 2104. https://doi.org/10.3390/agronomy11112104
- Khan, T., Zahid, M., Asim, M., Iqbal, Z., Choudhary, M. I., & Ahmad, V. U. (2002). Pharmacological activities of crude acetone extract and purified constituents of Salvia moorcraftianaPhytomedicine, 9(8), 749-752. https://doi.org/10.1078/094471102321621386
- Šućur, J. O. V. A. N. A., Popović, A. L. E. K. S. A. N. D. R. A., Petrović, M. I. L. O. Š., Anačkov, G. O. R. A. N., Malenčić, D. J. O. R. D. J. E., & Prvulović, D. E. J. A. N. (2015). Allelopathic effects and insecticidal activity of Salvia sclarea L. Studia Universitatis Babes-Bolyai Chemia, 60(1), 253-264. [Google Scholar]
- Rowshan, V., & Karimi, S. (2013). Essential oil composition and allelopathic affect of Salvia macrosiphon on Zea mays L. International Journal of Agriculture, 3(4), 788. [Google Scholar]
- Erez, M. E., & Fidan, M. (2015). Allelopathic effects of sage (Salvia macrochlamys) extract on germination of Portulaca oleracea seeds. Allelopathy journal, 35(2), 285-296. [Google Scholar]
- Bajalan, I., Zand, M., & Rezaee, S. (2013). Allelopathic effects of aqueous extract from Salvia officinalis on seed germination of barley and purslane. [Google Scholar]
- Bisio, A., Fraternale, D., Giacomini, M., Giacomelli, E., Pivetti, S., Russo, E., ... & De Tommasi, N. (2010). Phytotoxicity of Salvia spp. exudates. Crop Protection, 29(12), 1434-1446. https://doi.org/10.1016/j.cropro.2010.08.002
- Maccioni, A., Santo, A., Falconieri, D., Piras, A., Farris, E., Maxia, A., & Bacchetta, G. (2020). Phytotoxic effects of Salvia rosmarinus essential oil on Acacia saligna seedling growth. Flora, 269, 151639. https://doi.org/10.1016/j.flora.2020.151639
- El Mahdi, J., Tarraf, W., Ruta, C., Piscitelli, L., Aly, A., & De Mastro, G. (2020). Bio-herbicidal potential of the essential oils from different Rosmarinus officinalis L. chemotypes in laboratory assays. Agronomy, 10(6), 775. https://doi.org/10.3390/agronomy10060775
- Najem, A. M., Abed, I. J., & AL-Haidari, A. M. D. (2016). Evaluation the activity of Rosemary (Rosmarinus officinalis) essential oil against some cyanobacteria. Iraqi Journal of Biotechnology, 15(1). [Google Scholar]
- Macias, F. A., Molinillo, J. M., Varela, R. M., & Galindo, J. C. (2007). Allelopathy—a natural alternative for weed control. Pest Management Science: Formerly Pesticide Science, 63(4), 327-348. https://doi.org/10.1002/ps.1342
- Jabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57-65. https://doi.org/10.1016/j.cropro.2015.03.004
- Pavela, R., & Benelli, G. (2016). Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends in Plant Science, 21(12), 1000-1007. https://doi.org/10.1016/j.tplants.2016.10.005
- Sulaiman Rashid, T., Kazm Mahmud, K., Kakakhan Awla, H., & Anwar Qadir, S. (2024). Tomato Seed Treatment and Germination Responses to Selected Plant Extracts. Journal of Crop Health, 76(5), 1137-1146. https://doi.org/10.1007/s10343-024-01015-6
- ISTA, Z. (1999). International rules for seed testing. Seed Sci. Technol., 27(Supplement), 333. [Google Scholar]
- Qadir, S. A., Khursheed, M. Q., & Huyop, F. Z. (2016). In vitro culture characters of some bread wheat genotypes under drought stress condition. Ziraat Fakültesi Dergisi, 30, 11-16. https://www.cabidigitallibrary.org/doi/full/10.5555/20173246037
- Qadir, S. A., Sabr, H. A., & Younis, A. M. (2022). Growth performance of black poplar (Populus nigra) Under drought condition and sewage water irrigation. Basrah Journal of Agricultural Sciences, 35(1), 21-34. https://doi.org/10.37077/25200860.2022.35.1.02.
- Micić, D., Đurović, S., Riabov, P., Tomić, A., Šovljanski, O., Filip, S., ... & Blagojević, S. (2021). Rosemary essential oils as a promising source of bioactive compounds: Chemical composition, thermal properties, biological activity, and gastronomical perspectives. Foods, 10(11), 2734. https://doi.org/10.3390/foods10112734
- Saviuc, C., Gheorghe, I., Coban, S., Drumea, V., Chifiriuc, M. C., Banu, O., ... & Lazăr, V. E. R. O. N. I. C. A. (2016). Rosmarinus officinalis essential oil and eucalyptol act as efflux pumps inhibitors and increase ciprofloxacin efficiency against Pseudomonas aeruginosa and Acinetobacter baumannii MDR strains. Biotechnol. Lett., 21(4), 11783.
- Giarratana, F., Muscolino, D., Ragonese, C., Beninati, C., Sciarrone, D., Ziino, G., ... & Panebianco, A. (2016). Antimicrobial activity of combined thyme and rosemary essential oils against Listeria monocytogens in Italian mortadella packaged in modified atmosphere: Thyme & Rosemary EOs vs L. monocytogenes. Journal of Essential oil Research, 28(6), 467-474. https://doi.org/10.1080/10412905.2016.1165744
- Atti-Santos AC, Rossato M, Pauletti GF, Rota LD, Rech JC, Pansera MR, Agostini F, Serafini LA, Moyna P (2005) Physico-chemical evaluation of Rosmarinus officinalis essential oils. Braz Arch. Biol Technol 48:1035–1039. https://doi.org/10.1590/S1516-89132 005000800020
- Tawfeeq, A. A., Mahdi, M. F., Abaas, I. S., & Alwan, A. H. (2018). Isolation, quantification, and identification of rosmarinic acid, gas chromatography-mass spectrometry analysis of essential oil, cytotoxic effect, and antimicrobial investigation of Rosmarinus officinalisAsian J. Pharm. Clin. Res., 11(6), 126-32. https://doi.org/10.22159/ajpcr.2018.v11i6.24134
- Christopoulou, S. D., Androutsopoulou, C., Hahalis, P., Kotsalou, C., Vantarakis, A., & Lamari, F. N. (2021). Rosemary extract and essential oil as drink ingredients: An evaluation of their chemical composition, genotoxicity, antimicrobial, antiviral, and antioxidant properties. Foods, 10(12), 3143. https://doi.org/10.3390/foods10123143
- Elghobashy, R. M., El-Darier, S. M., Atia, A. M., & Zakaria, M. (2024). Allelopathic Potential of Aqueous Extracts and Essential Oils of Rosmarinus officinalis and Thymus vulgaris L. Journal of Soil Science and Plant Nutrition, 24(1), 700-715. https://doi.org/10.1007/s42729-023-01576-x
- Kucera, B., Cohn, M. A., & Leubner-Metzger, G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Science Research, 15(4), 281-307. https://doi.org/10.1079/SSR2005218.
- Finkelstein, R.R., 2010. The role of hormones during seed development and germination. In: Plant hormones: biosynthesis, signal transduction, action. 549-573. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-2686-7.
- Ghanizadeh, H., Lorzadeh, S., & Aryannia, N. (2014). Effect of weed interference on Zea mays: growth analysis. Weed Biology and Management, 14(2), 133-137.14(2), 133-137. https://doi.org/10.1111/wbm.12041.
- Rahimi, M., Bidarnamani, F., & Shabanipoor, M. (2015). Effects of allelopathic three medicinal plants on germination and seeding growth of Portulaca oleracea. http://researchtrend.net/bf12/239%20F.
- Fischer, N. H., Tanrisever, N., & Williamson, G. B. (1988). Allelopathy in the Florida scrub community as a model for natural herbicide actions. https://doi.org/10.1021/bk-1988-0380.ch015.
- Azizi, M., & Fuji, Y. (2005, July). Allelopathic effect of some medicinal plant substances on seed germination of Amaranthus retroflexus and Portulaca oleraceae. In: I International Symposium on Improving the Performance of Supply Chains in the Transitional Economies 699. 61-68. https://doi.org/10.17660/ActaHortic.2006.699.5
- Bachheti, A., Sharma, A., Bachheti, R. K., Husen, A., & Pandey, D. P. (2020). Plant allelochemicals and their various applications. Co-evolution of secondary metabolites, 441-465. https://doi.org/10.1007/978-3-319-96397-6_14
- Abrahim, D., Braguini, W. L., Kelmer-Bracht, A. M., & Ishii-Iwamoto, E. L. (2000). Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. Journal of Chemical Ecology, 26, 611-624.https://doi.org/10.1023/A:1005467903297
- Verdeguer, M., Sánchez-Moreiras, A. M., & Araniti, F. (2020). Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants, 9(11), 1571. https://doi.org/10.3390/plants9111571
- Zunino, M. P., & Zygadlo, J. A. (2004). Effect of monoterpenes on lipid oxidation in maize. Planta, 219, 303-309. https://doi.org/10.1007/s00425-004-1216-7