Document Type : Research Paper

Authors

School of Mining and Metallurgical Engineering, National Technical University of Athens, Zographou NTUA Campus (Politechneioupoli Zographou), Heroon Polytechniou Street 9, 15780 Zographou, Greece

Abstract

The present study concerns the plain of Arta, located in the northwestern part of Greece, in one of the most surplus water areas of the country, where the highest annual precipitation occurs. However, despite the region's water wealth, the plain is experiencing water shortages, posing challenges to agricultural productivity. This study delves into the examination of this paradox with the objective of offering insights into fundamental inquiries such as "What are the annual irrigation requirements of the plain and how are they distributed throughout the year?" “Is the water supplied by the collective irrigation network adequate to meet these requirements?" and "What proportion of irrigation needs are met by groundwater?". In the absence of data and measurements, a methodology was therefore developed for the approximation of the water balance, using software tools and drawing on the experience and knowledge of farmers, thus creating the basis for optimizing agricultural production and addressing management issues. To calculate the water requirements, the CROPWAT 8.0 software was used, utilizing the climatic data from six meteorological stations in the region, while a qualitative survey was conducted to estimate the rate of groundwater consumption, targeting a group of stakeholders and a group of farmers. The crops' annual water requirements were calculated to be 49.1 hm3, with drilled water meeting 41.1% of these needs. The public irrigation system's water supply is sufficient to meet the crops' annual water requirements. Water shortages and over-extraction of groundwater provide substantial management difficulties that need to be tackled. These challenges present significant chances for enhancement and growth and are essential for the region’s economic and social sustainability.

Keywords

Main Subjects

  1. Pereira, P., Bogunovic, I., Muñoz-Rojas, M., & Brevik, E. C. (2018). Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health, 5, 7–13. https://doi.org/10.1016/j.coesh.2017.12.003
  2. Scown, M. W., Winkler, K. J., & Nicholas, K. A. (2019). Aligning research with policy and practice for sustainable agricultural land systems in Europe. Proceedings of the National Academy of Sciences, 116(11), 4911–4916. https://doi.org/10.1073/pnas.1812100116
  3. Viana, C. M., Freire, D., Abrantes, P., Rocha, J., & Pereira, P. (2022). Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of The Total Environment, 806, 150718. https://doi.org/10.1016/j.scitotenv.2021.150718
  4. Lomba, A., Ferreiro da Costa, J., Ramil-Rego, P., & Corbelle-Rico, E. (2022). Assessing the link between farming systems and biodiversity in agricultural landscapes: Insights from Galicia (Spain). Journal of Environmental Management, 317, 115335. https://doi.org/10.1016/j.jenvman.2022.115335
  5. Landis, D. A. (2017). Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology, 18, 1–12. https://doi.org/10.1016/j.baae.2016.07.005
  6. FAO (2017). The Future of Food and Agriculture - Trends and Challenges Rome.
  7. Kousar, S., Ahmed, F., Pervaiz, A., & Bojnec, Š. (2021). Food Insecurity, Population Growth, Urbanization and Water Availability: The Role of Government Stability. Sustainability, 13(22), Article 22. https://doi.org/10.3390/su132212336
  8. Babu, S. C., & Gajanan, S. N. (2022). Chapter 5 - Changes in food consumption patterns: Its importance to food security—application of one-way ANOVA. In S. C. Babu & S. N. Gajanan (Eds.), Food Security, Poverty and Nutrition Policy Analysis (Third Edition) (pp. 135–168). Academic Press. https://doi.org/10.1016/B978-0-12-820477-1.00010-3
  9. Kearney, J. (2010). Food consumption trends and drivers. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2793–2807. https://doi.org/10.1098/rstb.2010.0149
  10. Abu Hatab, A., Cavinato, M. E. R., & Lagerkvist, C. J. (2019). Urbanization, livestock systems and food security in developing countries: A systematic review of the literature. Food Security, 11(2), 279–299. https://doi.org/10.1007/s12571-019-00906-1
  11. Seppelt, R., Klotz, S., Peiter, E., & Volk, M. (2022). Agriculture and food security under a changing climate: An underestimated challenge. IScience, 25(12), 105551. https://doi.org/10.1016/j.isci.2022.105551
  12. Krausmann, F. (2001). Land use and industrial modernization: An empirical analysis of human influence on the functioning of ecosystems in Austria 1830–1995. Land Use Policy, 18(1), 17–26. https://doi.org/10.1016/S0264-8377(00)00042-9
  13. Rasmussen, L. V., Coolsaet, B., Martin, A., Mertz, O., Pascual, U., Corbera, E., Dawson, N., Fisher, J. A., Franks, P., & Ryan, C. M. (2018). Social-ecological outcomes of agricultural intensification. Nature Sustainability, 1(6), Article 6. https://doi.org/10.1038/s41893-018-0070-8
  14. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Zenodo. https://doi.org/10.5281/zenodo.3553579
  15. Civitello, D. J., Cohen, J., Fatima, H., Halstead, N. T., Liriano, J., McMahon, T. A., Ortega, C. N., Sauer, E. L., Sehgal, T., Young, S., & Rohr, J. R. (2015). Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proceedings of the National Academy of Sciences, 112(28), 8667–8671. https://doi.org/10.1073/pnas.1506279112
  16. Maximillian, J., Brusseau, M. L., Glenn, E. P., & Matthias, A. D. (2019). Chapter 25—Pollution and Environmental Perturbations in the Global System. In M. L. Brusseau, I. L. Pepper, & C. P. Gerba (Eds.), Environmental and Pollution Science (Third Edition) (pp. 457–476). Academic Press. https://doi.org/10.1016/B978-0-12-814719-1.00025-2
  17. Hassanain Et Al., N. (2021). Adverse Impacts of Water Pollution from Agriculture (Crops, Livestock, and Aquaculture) on Human Health, Environment, and Economic Activities. Egyptian Journal of Aquatic Biology and Fisheries, 25(2), 1093–1116. https://doi.org/10.21608/ejabf.2021.171677
  18. Mironiuk, M., & Izydorczyk, G. (2022). Chapter 6—Toward increasing efficiency of fertilization. In K. Chojnacka & A. Saeid (Eds.), Smart Agrochemicals for Sustainable Agriculture (pp. 139–162). Academic Press. https://doi.org/10.1016/B978-0-12-817036-6.00005-4
  19. Skrzypczak, D., Mikula, K., Izydorczyk, G., Taf, R., Gersz, A., Witek-Krowiak, A., & Chojnacka, K. (2022). Chapter 4—Smart fertilizers—Toward implementation in practice. In K. Chojnacka & A. Saeid (Eds.), Smart Agrochemicals for Sustainable Agriculture (pp. 81–102). Academic Press. https://doi.org/10.1016/B978-0-12-817036-6.00010-8
  20. STAT. (Hellenic Statistical Authority) (2011) ONLINE Available at: https://www.statistics.gr/documents/20181/1210503/FEK_monimos_rev.pdf/125204a0-726f-46fe-a141-302d9e7a38dc
  21. STAT. (Hellenic Statistical Authority) (2021) ONLINE Available at: https://www.statistics.gr/documents/20181/17286366/FEK-2023-Tefxos-B-02802.pdf/cf59bd87-ddb9-84a2-d421-b08e89cb9542
  22. UNEP (United Nations Environment Programme) (2007). Our Planet: agriculture and economic development. https://wedocs.unep.org/20.500.11822/7470.
  23. Tsirogiannis, I., & Triantos, S. (2009). Survey of irrigation practice in Arta and development of web tools for irrigation management. National Conference of the Greek Society of Agricultural Engineers, Thessaloniki, 8–10.
  24. Tsirogiannis, I. L., Karras, G., Tsolis, D., & Barelos, D. (2015). Irrigation and Drainage Scheme of the Plain of Arta – Effects on the Rural Landscape and the Wetlands of Amvrakikos’ Natura Area. Agriculture and Agricultural Science Procedia, 4. https://doi.org/10.1016/j.aaspro.2015.03.004
  25. Ewaid, S. H., Abed, S. A., & Al-Ansari, N. (2019). Crop Water Requirements and Irrigation Schedules for Some Major Crops in Southern Iraq. Water, 11(4), Article 4. https://doi.org/10.3390/w11040756
  26. Raja, O., & Parsinejad, M. (2021). Water-use Zoning of major crops obtained from CROPWAT 8.0 model in the Urmia Lake basin. Iranian Journal of Irrigation & Drainage, 14(6), 2164–2174. https://idj.iaid.ir/article_124898_en.html
  27. Aydın, Y. (2022). Quantification of water requirement of some major crops under semi-arid climate in Turkey. PeerJ, 10, e13696. https://doi.org/10.7717/peerj.13696
  28. Solangi, G. S., Shah, S. A., Alharbi, R. S., Panhwar, S., Keerio, H. A., Kim, T.-W., Memon, J. A., & Bughio, A. D. (2022). I+nvestigation of Irrigation Water Requirements for Major Crops Using CROPWAT Model Based on Climate Data. Water, 14(16), Article 16. https://doi.org/10.3390/w14162578
  29. Gabr, M. E.-S. (2022). Management of irrigation requirements using FAO-CROPWAT 8.0 model: A case study of Egypt. Modeling Earth Systems and Environment, 8(3), 3127–3142. https://doi.org/10.1007/s40808-021-01268-4
  30. Muroyiwa, G. S., Mashonjowa, E., Mhizha, T., Muchuweti, M., & Raeth, P. G. (2022). Estimating crop water requirements for irrigation scheduling of tomato using Aquacrop 5.0 and Cropwat 8.0 models under scarcity and unreliability of rainfall in Harare. African Journal of Agricultural Research, 18(12), 1089–1101. https://doi.org/10.5897/AJAR2022.16186
  31. Dhruw, M., & Pandey, V. K. (2023). Estimation of Actual Evapotranspiration (ETa) of Major Crops of a Distributary of Mahanadi Canal Command Using CROPWAT 8.0 Model by Penman: Montieth Method. Current Journal of Applied Science and Technology, 42(20), 26–32. https://doi.org/10.9734/cjast/2023/v42i204149
  32. Shah, J., & Jadav, R. (2023). Determination of Crop water Requirement and Irrigation Scheduling for Major Crops of Surendranagar, Gujarat Using CROPWAT 8.0. International Journal for Research in Applied Science and Engineering Technology, 11, 108–115. https://doi.org/10.22214/ijraset.2023.51392
  33. Soomro, S., Solangi, G., Siyal, A. A., Golo, A., Bhatti, N., Soomro, A., Memon, A., Panhwar, S., & Keerio, H. A. (2023). Estimation of irrigation water requirement and irrigation scheduling for major crops using the CROPWAT model and climatic data. Water Practice and Technology, 18. https://doi.org/10.2166/wpt.2023.024
  34. Eurostat (2019) GDP per capita in 281 EU regions Regional GDP per capita ranged from 31% to 626% of the EU average in 2017 https://ec.europa.eu/eurostat/documents/2995521/9618249/1-26022019-AP-EN.pdf/f765d183-c3d2-4e2f-9256-cc6665909c80
  35. Eurostat (2021) More than a fifth of the EU population are aged 65 or over https://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/ddn-20210316-1
  36. Ramsar Convention (1971). Ramsar, Iran, 2.2.1971.
  37. EEA (2014). Amvrakikos Wetlands National Park. Available at: http://natura2000.eea.europa.eu/natura2000/SDF.aspx?site=GR2110004, (Accessed on 15/01/2023)
  38. Smith, M., & Nations, F. and A. O. of the U. (1992). CROPWAT: A Computer Program for Irrigation Planning and Management. Food & Agriculture Org.
  39. Allen, R., Pereira, L., Raes, D., & Smith, M. (1998). FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 56, 26–40.
  40. Mamassis, N., Mazi, K., Dimitriou, E., Kalogeras, D., Malamos, N., Lykoudis, S., Koukouvinos, A., Tsirogiannis, I., Papageorgaki, I., Papadopoulos, A., Panagopoulos, Y., Koutsoyiannis, D., Christofides, A., Efstratiadis, A., Vitantzakis, G., Kappos, N., Katsanos, D., Psiloglou, B., Rozos, E., … Koussis, A. D. (2021). OpenHi.net: A Synergistically Built, National-Scale Infrastructure for Monitoring the Surface Waters of Greece. Water, 13(19), Article 19. https://doi.org/10.3390/w13192779
  41. Kozanis, S., Christofides, A., Mamassis, N., Efstratiadis, A., & Koutsoyiannis, D. (2010). Hydrognomon—Open source software for the analysis of hydrological data. https://doi.org/10.13140/RG.2.2.21350.83527
  42. Doorenbos, J., & Kassam, A. (1979). FAO Irrigation and Drainage Paper 33. In Yield Response to Water.
  43. Gómez-Tagle, A. F., Gómez-Tagle, A., Fuerte-Velázquez, D. J., Barajas-Alcalá, A. G., Quiroz-Rivera, F., Alarcón-Chaires, P. E., & Guerrero-García-Rojas, H. (2022). Blue and Green Water Footprint of Agro-Industrial Avocado Production in Central Mexico. Sustainability, 14(15), Article 15. https://doi.org/10.3390/su14159664
  44. Walther, E., & Schnell, S. (2009). Black chokeberry (Aronia melanocarpa)—A special fruit crop. 14, 179–182.
  45. Papamichail, D., Babajimopoulos, C. (2014) Applied Agricultural Hydraulics. ZITI Publications, pp 330-378
  46. Kotsopoulos, S. (2006). Hydrology. ION Publishing Group, pp224
  47. Papazafeiriou, Z. (1999) Crops’ water requirements. ZITI Publications, pp 364
  48. Doorenbos, J., Pruitt W. O. (1977) Crop Water Requirements. FAO Irrigation and Drainage Paper 24, FAO, Rome, 144 p.
  49. Smith, M., Segeren, A., Pereira, L. S., Perrier, A., & Allen, R. G. (1991). Report on the Expert Consultation on Procedures for Revision of FAO Guidelines for Prediction of Crop Water Requirements. Rome, Italy, 28-31 May 1990.
  50. Gabr, M. E., & Fattouh, E. M. (2021). Assessment of irrigation management practices using FAO-CROPWAT 8, case studies: Tina Plain and East South El-Kantara, Sinai, Egypt. Ain Shams Engineering Journal, 12(2), 1623–1636. https://doi.org/10.1016/j.asej.2020.09.017
  51. Tadese, M., & Zemadim, B. (2015). Water Demand Analysis and Irrigation Requirement for Major Crops at Holetta Catchment, Awash Subbasin, Ethiopia. 5.
  52. Hammarberg, K., Kirkman, M., & de Lacey, S. (2016). Qualitative research methods: When to use them and how to judge them. Human Reproduction, 31(3), 498–501. https://doi.org/10.1093/humrep/dev334
  53. Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Thousand Oaks, CA: Sage. pp 352
  54. Merriam, S. B. (2009). Qualitative research: A guide to design and implementation. San Francisco: Jossey-Bass. pp 320
  55. Alam, M. M., & Bhutta, M. N. (2004). Comparative evaluation of canal seepage investigation techniques. Agricultural Water Management, 66(1), 65–76. https://doi.org/10.1016/j.agwat.2003.08.002