Document Type : Research Paper

Authors

1 Department of Soil Science, National Higher School of Agronomy, El Harrach, Algeria

2 Department of Soil Science, National Higher School of agronomy , El Harrach, Algiers, Algeria

Abstract

We investigated the effect of sodicity on the reversibility of saturated hydraulic conductivity (Ks) under high electrolyte concentration (HEC) EC ≥16 dS/m. This laboratory investigation consisted of measurment of Ks using the permeameter of McNeal and Reeve (1964) by varying sodicity. We increased sodicity, expressed by Sodium Adsorption Ratio (SAR), in steps from a min of 0 to a max of 30, and then we followed the same procedure, but then backwards. Measurement of soil dispersion was carried out for all the SAR values used in the measurement of Ks using the method of Velasco-Molina et al. (1971). Under HEC Ks decreased as sodium adsorption ratio (SAR) increased. SAR increment of +/- 15 causes the most important decrease. However, when decreasing the SAR again, Ks does not show an increase, it is irreversible for these conditions of experimentation.In contrast; soil dispersion (SD) shows an increase with increasing SAR, but then also decreases again when SAR is lowered. This decrease is not sufficient to compensate the irreversibility of Ks.

Keywords

Main Subjects

  1. Aubert, G. (1978). Méthodes d’analyses des sols. Marseille, PRDP, 191p.
  2. Bennett, J. M., Marchuk, A., Marchuk, S. (2016). An alternative index to the exchangeable percentage for an explanation of dispersion occurring in soils. Soil Research. 54: 949-957. http://dx.doi.org/10.1071/sr15281
  3. Dane, J.H., Klute, A. (1977). Salt effects on hydraulic properties of a swelling soil. Soil Science Society of America Journal. 41: 1043- 1049. http://dx.doi.org/10.2136/sssaj1977.03615995004100060005x
  4. Dang, A., Bennett, J., Marchuk, A., Biggs, A.S., Raine, S. (2018). Evaluating dispersive potential to identify the threshold electrolyte concentration in non-dispersive soils. Soil Research. 58: 549-559. http://dx.doi.org/10.1071/sr17304
  5. Galindo, G.G., Bingham, F.T. (1977). Homovalent and heterovalent cation exchangeable equilibria in soils with variable surface charge. Soil Science Society of America Journal.41:883- 886. http://dx.doi.org/10.2136/sssaj1977.03615995004100050014x
  6. Goldberg S., Forster H.S., Heick E.L., 1991. Floculation of illite/kaolinite and illite/montmorillonite mixture as affected by sodium adsorption Ratio and pH. Clays and Clay Minerals.39: 375-380. http://dx.doi.org/10.1346/ccmn.1991.0390406
  7. Haliwell, D.J., Barlowk, M., Nash D, M. (2001). A review of the effects of wastewater sodium on physical properties and their implications for irrigation systems. Australian Journal of Soil Research. 39:1259-1267. http://dx.doi.org/10.1071/sr00047
  8. International Soil Reference and Information Centre (2002). Procedures for soil analysis. The Netherlands, International Soil Reference and Information centre, Food and Agriculture Organization of United nations, 21-1p
  9. Jackson, M.L. (1958). Soil Chemical Analysis. Prentice Hall India, 498p.
  10. Jayawardane, N.S., Christen, E.W., Arienzo, M., Quayle, W.C. (2011). Evaluation of the effect of cation combination soil hydraulic conductivity. Soil Research. 49: 56–64 http://dx.doi.org/10.1071/sr09222
  11. Kaewmano, C., Kheoruenromne, I., Suddhiprakarn, A., Gilkes, R.J. (2009. Aggregate stability of salt affected kaolinitic soils on the North east plateau, Thailand. Australian Journal of Soil Research. 47: 697-706. http://dx.doi.org/10.1071/sr08248
  12. Levy, G.J., Shainberg, I., Miller, W.P. (1998). Sodic soil. New York, Oxford University Press, p. 77-94.
  13. Mace, J.E., Amrhein, C. (2001). Leaching and reclamation of a soil irrigated with moderate SAR waters. Soil Science Society of America Journal. 65: 199- 204.
    http://dx.doi.org/10.2136/sssaj2001.651199x
  14. Mathieu, C., Pieltain, F. (2003). Analyse chimique des sols : méthodes choisies. Paris, Lavoisier Tec et Doc, 388p.
  15. McNeal, B.L., Reeve, R.C. (1964). Elimination of boundary – flow errors in laboratory hydraulic conductivity measurements. Soil Science Society of America Journal. 28: 713- 714.
    http://dx.doi.org/10.2136/sssaj1964.03615995002800050040x
  16. McNeal, B.L., Coleman, N.T. (1966). Effect of solution composition on soil hydraulic conductivity measurements. Soil Science Society of America Journal.30:308- 312.
    http://dx.doi.org/10.2136/sssaj1966.03615995003000030007x
  17. McNeal, B.L. (1968). Prediction of the effect of mixed salt solutions on soil hydraulic conductivity. Soil Science Society of America Journal.32:190- 193. http://dx.doi.org/10.2136/sssaj1968.03615995003200020013x
  18. Moutier, M., Shainberg, I., Levy J.G., (1998). Hydraulic gradient, aging, and water quality effects on a hydraulic conductivity of a vertisol. Soil Science Society of America Journal.62:1488- 1496. http://dx.doi.org/10.2136/sssaj1998.03615995006200060003x
  19. Nelson P.N., Baldock J.A., Clarke P., Oades J.M., Chuchman G.J., 1999. Disspersed clay and organic matter in soil: Their nature and associations. Australian Journal of Soil Research. 37: 289-315. http://dx.doi.org/10.1071/s98076
  20. Rengasamy, P., (1991). Advances in soil structure: An introduction. Australian Journal of Soil Research. 29:697-698.
  21. Rengasamy, P., Marchuk, A. (2011). Cation ration of soil structural stability (CROSS). Soil Research. 49: p.280-285. http://dx.doi.org/10.1071/sr10105
  22. Rengasamy, P., Tavakkoli, E., McDonald, G. (2016). Exchangeable cations and clay dispersion: net dispersive charge, a new concept for dispersive soil. European Journal of Soil Science, 67 : 659-665. http://dx.doi.org/10.1111/ejss.12369
  23. Rodrigues de Meloa T., Rengasamy P., Figueiredoa A.,Barbosac G M, Filhoa J T., (2019). A new approach on the structural stability of soils: Method proposal. Soil and tillage research. 193:171-179. http://dx.doi.org/10.1016/j.still.2019.04.013
  24. Ruiz vera, V.M., Laosheng, W. (2006). Influence of sodicity, clay mineralogy, prewetting rate and their interaction on aggregate stability. Soil Science Society of America Journal.70:1825-1833. http://dx.doi.org/10.2136/sssaj2005.0285
  25. Saejiew A., et Grunberger O., Arunin S., Favre F., Tessier D., Boivin P., 2004. Critical coagulation concentration of paddy soil clays in sodium-ferrous iron electrolyte. Soil Science Society of America Journal, 68: 789-794. http://dx.doi.org/10.2136/sssaj2004.7890
  26. Saidi, D. (1985). Etude agropédologique du périmètre de la mina : Evaluation des propriétés physiques des sols. Mémoire d’ingénieur, El Harrach, Institut National Agronomique, 80p.
  27. Shengqiang T., She Dongli SH., Hongde W. (2020). Effect of salinity on soil structure and soil hydraulic characteristics. Canadian Journal of Soil Science.101: 62-73. http://dx.doi.org/10.1139/cjss-2020-0018
  28. Sumner, M.E. (1993). Sodic soils: New perspectives. Australian Journal of Soil Research. 31:683-750. http://dx.doi.org/10.1071/sr9930683
  29. Tavakkoli, E., Mc Donald, G.K. (2016). Exchangeable cations and clay dispersion : net dispersive charge, a new concept for dispersive soil. European Journal of Soil Science. 49:280-285. http://dx.doi.org/10.1111/ejss.12369
  30. USSL (1954). Diagnostics and Improvement of Saline and alkali soils. Washington, Richards L.A., Handbook n.60, 160p.
  31. Velasco-molina, H.A., Swoboda, A. R., Goldfray, C.L. (1971). Dispersion of soils of different mineralogy in relation to sodium adsorption ration and electrolytic concentration, Soil Science.3:282-287. http://dx.doi.org/10.1097/00010694-197105000-00003
  32. Wang, X., Sale, P., Hayden, H., Tang, C., Clark, G., Armstrong, R. (2020). Plant roots and deep-banded nutrient-rich amendments influence aggregation and dispersion in a dispersive clay subsoil. Soil Biology and Biochemistry. 141:107664. http://dx.doi.org/10.1016/j.soilbio.2019.107664