Document Type : Research Paper


1 43 Avenue Charles Nicolle, Tunis 1082, Tunisia

2 Research Laboratory of Ecosystems & Aquatic Resources, National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicolle, Tunis, 1082, Tunisia.

3 Laboratoire ADIPARA, École Supérieure d’Agriculture, Université de Carthage, Mateur, 7030 Mateur, Tunisie.

4 Laboratoire de Recherche : Matériaux Molécules et Applications, Institut National Agronomique de Tunisie, Université de Carthage, 43 Avenue Charles Nicolle, Tunis 1082, Tunisie.


Climate changes affect the economic viability of livestock. Therefore, this study aimed to characterize the heat stress in Holstein cattle raised in the arid region of Tunisia as well as to evaluate the effect of the temperature-humidity index (THI) on daily milk production and components. For this reason, 76940 monthly individual records collected from 1995 to 2018 from 3056 Holstein cows were used. THI calculated from ambient temperature and relative humidity was used as a measure of heat stress. To study the effect of THI on milk production, a repeated measures linear mixed model was used. Results showed a significant (P<0.01) decrease in daily milk yield, daily protein, and fat content in all cow’s parity classes. For each point increase of the THI values beyond 64, milk yield, fat, and protein contains decreased by 0.32 kg, 0.09, and 0.06 %, respectively. Moreover, when the THI value varied from 64 to 85, fat content decreased by 29 %, protein by 17 %, and milk production by 30 %. Heat stress impact negatively milk production and milk components of dairy cows. These results can be a way to improve the length of productive life for Holstein dairy cattle in the hard climate. Serious management strategies are needed to improve dairy cow productivity and minimize the heat stress impact.


Main Subjects

  1. Aguilar, I., Misztal, I., & Tsuruta, S. (2010). Short communication: Genetic trends of milk yield under heat stress for US Holsteins. J. Dairy Sci. 93:1754–1758. jds.2009 -2756.
  2. Ammer, S., Lambertz, C., von Soosten, D., Zimmer, k., Meyer, U., Dänicke, S., & Gauly, M. (2018). Impact of diet composition and temperature-humidity index on water and dry matter intake of high-yielding dairy cows. J. Anim. Phys. Anim. Nutr. 102:103-113.
  3. Armstrong, D.V. (1994). Heat stress interaction with shade and cooling, J. Dairy Sci., 7, 2044-2050.
  4. Becker, C.A., Collier, R.J., & Stone, A.E., (2020). Invited review: Physiological and behavioral effects of heat stress in dairy cows. J. Dairy Sci. 103:6751–6770.
  5. Bellagi, R., Martin, B., Chassaing, C., Najar, T., & Pomiès, D. (2017). Evaluation of heat stress On Tarentaise and Holstein cow performance in the Mediterranean climate.Int.J. Biometeorol.
  6. Berman, A. (2005). Estimates of heat stress relief needs for Holstein dairy cows, J.Anim Sci., 8 3(6):1377–1384.
  7. Berman, A., Folman, Y., Kaim, M., Mamen, M., Herz, Z., Wolfenson, D., Arieli, A., & Graber, Y. (1985). Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate, J. Dairy Sci., 68, 1488–1495.
  8. Bernabucci, U., Tiffani, S., Buggiotti, L., Vitali, A., Lacetera, N., & Nardone, A. (2014). The effects of heat stress in Italian Holstein dairy cattle, J. Dairy Sci., 97(1):471–486.
  9. Bertocchi, L.A., Vitali, N., Lacetera, A., Nardone, Varisco, G., & Bernabucci, U. (2014). Seasonal variations in the composition of Holstein cow’s milk and temperature-humidity index relationship, J. Anim Sci., 8(4):667–674.
  10. Bohmanova, J., Misztal, I., & Cole, J.B. (2007). Temperature-humidity indices as indicators of milk production losses due to heat stress, J. Dairy Sci., 90: 1947–1956.
  11. Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M. & Belyea, R. (2002). The relationship of the temperature-humidity index with milk production of dairy cows in a Mediterranean climate, J. Anim Res, 51:479–491.
  12. Brito, L.F., Bedere, N., Douhard, F., Oliveira, H.R., Arnal, M., Penagaricano, F., Schinckel, A.P., Baes, C.F., & Miglior, F. (2021).Review: Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal 15:100292.
  13. Collier, R.J., Zimbelman, R.B., Rhoads, R.P., Rhoads, M.L., & Baumgard, L.H. (2011). A Re-evaluation of the Impact of Temperature Humidity Index (THI) and Black Globe Humidity Index (BGHI) on Milk Production in High Producing Dairy Cows. In: Proceedings of the 24th Western Dairy Management Conference (S Virginia) pp: 113–125.
  14. Cowley, F., Barber, D., Houlihan, A., & Poppi, D. (2015). Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism, J. dairy Sci., 98(4):2356–2368.
  15. Djelailia, H., N. M’Hamdi, B. Jemmali, R. Bouraoui & T. Najar (2021). Effects of thermal stress on physiological parameters and plasma hormones concentration in Holstein dairy cows under arid climatic conditions. South African Journal of Animal Science,51(4) :2221-4062.
  16. Djelailia, H., R. Bouraoui, B. Jemmali & T. Najar (2020). Effects of heat stress on reproductive efficiency in Holstein dairy cattle in the North African arid region. Reproduction in Domestic Animals, 55(9) :1250-1257.
  17. Du Preez, J.H., Hattingh, P.J., Giesecke, W.H., & Eisenberg, B.E. (1990). Heat stress in dairy cattle and other livestock under southern African conditions. III. Monthly temperature-humidity index mean values and their significance in the performance of dairy cattle, Onderstepoort, J. vet. Res, 57, 243–248.
  18. Emery, R.S. (1978). Feeding for increased milk protein, J. Dairy Sci., 61:825-828.
  19. Fontoura, A.B.P., Javaid, A., Sáinz de la Maza-Escolà,V., Salandy, N.S., Fubini, S.L., Grilli, E., McFadden, J.W. (2022). Heat stress develops with increased total-tract gut permeability, and dietary organic acid and pure botanical supplementation partly restores lactation performance in Holstein dairy cows. J Dairy Sci. 105(9):7842-7860.
  20. Gantner, V., Mijić, P., Kuterovac, K., Solić, D., & Gantner, R. (2011). Temperature humidity index values and their significance on the daily production of dairy cattle, Mljekarstvo. 61(1): 56–63.
  21. Gao, S.T., Guo, J., Quan, S.Y., Nan, X.M., Fernandez, M.V.S., Baumgard, L.H., & Bu, D.P. (2017). The effects of heat stress on protein metabolism in lactating Holstein cows, J. Dairy Sci., 100(6):5040–5049.
  22. Heck, J., Van Valenberg, H., Dijkstra, J., & Van Hooijdonk. A. (2009). Seasonal variation in the Dutch bovine raw milk composition, J. dairy Sci., 92(10):4745-4755.
  23. Ingraham, R.H., Stanley, R.W., & Wagner, W.C. (1979). Seasonal effect of the tropical climate on shaded and unshaded cows as measured by rectal temperature, adrenal cortex hormones, thyroid hormone, and milk production, Am. J. Vet. Res, 40: 1792–1797.
  24. Itoh, F., Obara, Y., Rose, M.T., & Fuse, H. (1998). Heat influences on plasma insulin and glucagon in response to secretagogue in non-lactating dairy cows, J. Dames Anim Endocrinol. 15:499–510.
  25. Johnson, H.D. (1980). Environmental management of cattle to minimize the stress of climate change, International Journal of Biometeorology. 24 (Suppl. 7, Part 2) 65–78.
  26. Johnson, H.D., Ragsdale, A.C., Berry, I.L., & Shanklin, M.D. (1962). Effects of various temperature-humidity combinations on milk production of Holstein cattle. Res Bull No 791. College of Agriculture, Agricultural Experimental Station, Univ of Missouri, Colombia.
  27. Kibler, H.H. (1964). Thermal effects of various temperature-humidity combinations on Holstein cattle as measured by eight physiological responses. Univ of Missouri, Agricultural Experiment Station, Research Bulletin, 120:1–42.
  28. Knapp, D.M., & Grummer, R.R. (1991). Response of lactating dairy cows to fat supplementation during heat stress, J. Dairy Sci., 74: 2573–2579.
  29. Lemerle, C., & Goddard, M.E. (1986). Assessment of heat stress in dairy cattle in Papua New Guinea, Tropical Animal Health and Production, 18(4):232-42.
  30. M’Hamdi, N., C. Darej, K. Attia, I. Znaidi, R. Khattab, H. Djelailia, R. Bouraoui, R. Tabboubi, L. Marzouki, M, Ayadi (2021). Modelling THI effects on milk production and lactation curve parameters of Holstein dairy cows. Journal of Thermal Biology, 99(Suppl. 1):102917.
  31. McDowell, R.E., Hooven, N.W., & Camoens, J.K. (1976). Effects of climate on performance of Holsteins in first lactation, J. Dairy Sci., 59:965–973.
  32. Nardone, A., Ronchi, B., Lacetera, N., & Ranieri, M.S., Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems, Livestock Science, 130, 57–69.
  33. Rasad, A., Muhammed, E., Kannan, A., & Aravindakshan, T.V. (2012). Thermal stress in dairy cattle, J. Indian Vet. Assoc., 10:45-51.
  34. Ravagnolo, O., Misztal, I., & Hoogenboom, G. (2000). Genetic component of heat stress in dairy cattle, development of heat index function, Journal of Dairy Science, 83(9):2120–2125.
  35. Rejeb, B.M. (2014). Etude de la Physiologie, du comportement alimentaire et des performances des vaches à faible et à forte production laitière dans les conditions du stress thermique, Ph.D. Thesis., INAT, Tunis, 2014.
  36. Roenfeldt, S. (1998). You can’t afford to ignore heat stress, Dairy Herd Management, 35, 6.
  37. Schneider, P., Beede, D., and Wilcox, C. (1988). Nycterohemeral patterns of acid-base status, mineral concentrations, and digestive function of lactating cows in natural or chamber heat stress environments, Journal of Animal Science, 66(1):112–125.
  38. Smith, D.L., Smith, T., Rude, B.J., & Ward, S.H.(2013). Short communication: comparison of the effects of heat stress on milk and component yields and somatic cells score in Holstein and Jersey cows, J. Dairy Sci., 96: 3028–3033.
  39. Tao, S., Orellana, R.M., Weng, X., Marins, T.N., Dahl, G.E., & Bernard, J.K. (2018). Symposium review: the influences of heat stresson bovine mammary gland function1. J. Dairy Sci. 101:5642–5654.
  40. Thatcher, W.W., Flamenbaum, I., Block, J., & Bilby, T.R. (2010). Interrelationships of heat stress and reproduction in lactating dairy cows. In: High plains dairy conference, Amarillo, Texas, pp 46–60.
  41. Van Eetvelde, M., Kamal, M.M., Vandaele, L., & Opsomer, G. (2017). Season of birth is associated with first-lactation milk yield in Holstein Friesian cattle, Animal, p 1-8.
  42. Wiersma, F. (1990). Temperature-humidity index table for dairy producer to estimate heat stress for dairy cows, Department of Agricultural Engineering, The University of Arizona., Tucson, 1990.Result score too low[44] Yousef, M.K. (1985). Stress physiology in livestock, Volume I, Basic principles. CRC Press, 1985. Animal Production Science Page 16-21.
  43. Yue, S., Wang, Z., Wang, L., Peng, Q., & Xue, B. (2020). Transcriptome functional analysis of mammary glands of cows in heat stress and thermoneutral condition. Animals 10:1015.
  44. Zimbelman, R.B., Rhoads, R.P., Rhoads, M.L., Duff,G.C., Baumgard, L.H., & Collier, R.J. (2009). A re-evaluation of the impactof temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. Pages 158–168 in Proc. Southwest Nutrition and Management Conference, Tempe, AZ. University of Arizona.