Document Type : Research Paper

Authors

1 food science , agriculture college , university of kufa

2 Food Science Department - Faculty Of Agriculture-University of Kufa Specialty: food science and Biotechnology

3 قسم علوم الاغذیة , کلیة الزراعة و جامعة الکوفة , العراق

Abstract

A total of twelve bacterial isolates from different samples of yoghurt and milk purchased from local markets in Diwaniyah Governorate. The preliminary screening was carried out all bacterial isolates by gram staining. The six isolates were selected based on the intensity of colour variation in the fermentation medium and were identified according to phenotypic, microscopic, and biochemical examinations, which included twelve isolates of Lactobacillus spp.  Vitek II Compact instrument was used with all isolates to confirm the initial identification. The secondary screening was performed for isolates of Lactobacillus spp.species. Given the amount of the produced lactic acid, the L.casei strain 1859 had the highest lactic acid production, which was 64.32 g/L. The 16S rRNA test allowed the identification of this isolate.The results showed that the best conditions for acid production were 62.76 mg/L and the L.casei strain 9836 grown on the alternative medium containing 50 % whey, 7% molasses, and pH 6.9, incubated on an orbital shaker at 38°C for 24 hours, and agitated at 250 rpm.FTIR techniques were used to identify the nucleus of the hydrogen atom (proton) 1H and the carbon atoms 13C in the presence of standard lactic acid for comparison. The results revealed the peaks and bands of the produced acid were some similar to that of the standard acid.

Keywords

Main Subjects

  1. Abdel-Rahman. M.A, Yukihiro.T, Kenji.S.(2013), Recent developments in the production of lactic acid by microbes through fermentation processes (Advances in modern technology), 877-902(3).
    https://doi.org/10.1016/j.biotechadv.2013.04.002
  2. Elly G.Shtine; Tirrel K; Setron D.(2015). Kinds of Lactobacillus: Taxonomic complexity and controversia sensitivities to infectious and clinical diseases. 98-107(2)60.
  3. Chapman, George B.؛ Hillier, James (2012)، "Electron microscopy of ultra-thin sections of bacteria I. Cellular division in Bacillus cereus"، Bacteriol. 362–373. https://doi.org/10.1128/jb.66.3.362-373.1953
  4. Beijerinck , union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol Microbiol. 2020, 70, 2782–2858
  5. Bintsis, T. Lactic acid bacteriaas starter cultures: An update in their metabolism and genetics. Aims Microbiol. 2018, 4, 665–684. https://doi.org/10.3934/microbiol.2018.4.665
  6. Hati, S.; Mandal, S.; Prajapat, J.B. Novel Starters for Value Added Fermented Dairy Products. Curr. Res. Nutr. Food Sci. J. 2013, 1, 83–91 https://doi.org/10.12944/crnfsj.1.1.09
  7. Karimi, G.; Sabran, M.R.; Jamaluddin, R.; Parvaneh, K.; Mohtarrudin, N.;Ahmad, Z.; Khodavandi, A. The anti-obesity effects of Lactobacillus casei strain Shirota versus Orlistat on high fat diet-induced obese rats. Food Nutr. Res. 2015, 59, 29273. https://doi.org/10.3402/fnr.v59.29273
  8. Abraham,A., Moideen, S. K., Mathew, A. K., SR, A. R., Sindhu, R., Pandey, A., ... & Sukumaran, R. K. (2020). Fumaric acid production from suger anetrash hydrolysate using Rhizopus oryzae NIIST 1. Indian Journal of Experimental Biology (IJEB), 58(08), 548-556. https://doi.org/10.56042/ijeb.v58i08.39412
  9. Al-Roomi, F. W., & Al-Sahlany, S. T. G. (2022). Identification Characterization of Xanthan Gum Produced from Date Juice by a Local Isolate of Bacteria Xanthomonas campestris. Basrah Journal of Agricultural Sciences, 35(1), 35–49. https://doi.org/10.37077/25200860.2022.35.1.03
  10. Alam, M. T., Mahato, A. K., Kumari, L., & Singh, R. S. (2021). Fermentative study on optimization of lactic acid production from cane sugar by Lactobacillus spp. European Journal of Molecular & Clinical Medicine.
  11. Alkadi, H. (2020). A review on free radicals and antioxidants. Infectious DisordersDrug Targets (Formerly Current Drug Targets-Infectious Disorders), 20(1), 16-26. https://doi.org/10.2174/1871526518666180628124323
  12. Amado, I. R., Vázquez, J. A., Pastrana, L., & Teixeira, J. A. (2017). Microbial production of hyaluronic acid from agro-industrial by-products: Molasses and corn steep liquor. Biochemical Engineering Journal, 117, 181-187. https://doi.org/10.1016/j.bej.2016.09.017
  13. Armento, D. J. (2017). A three carbon source feeding strategy for hyaluronic acid production in recombinant Escherichia coli (Doctoral dissertation, University of Georgia).Armstrong, D. C., Cooney, M. J., & Johns, M. R. (1997). Growth and aminoacid requirements of hyaluronic-acid-producing Streptococcus zooepidemicus. Applied Microbiology and Biotechnology, 47(3(. https://doi.org/10.1007/s002530050932
  14. Armstrong, D. C., & Johns, M. R. (2018). Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Applied and Environmental Microbiology, 63(7) . https://doi.org/10.1128/aem.63.7.2759-2764.1997
  15. Aroskar, V. J., Kamat, S. D., & Kamat, D. V. (2012). Effect of various physical parameters and statistical medium optimization on production of hyaluronic acid using S. equi subsp. zooepidemicus ATCC 39920. Institute of Integrative Omics and Applied Biotechnology Letters, 2(1).24-26. https://doi.org/10.5195/iioablett.2012.17
  16. Atlas, R. M. (2006). The handbook of microbiological media for the examination of food. CRC press. Microbiology, 89(2), 8428–8437.
  17. Ibrahim, A. (2020). Productive performance and cost benefits of feeding wistar albino rats with processed tropical sickle pod (Senna obtusifolia) leaf mealbased diets. Translational Animal Science, 4(2), 589-593. https://doi.org/10.1093/tas/txaa036
  18. Auta, H. S., Abidoye, K. T., Tahir, H., Ibrahim, A. D., & Aransiola, S. A.(2014(. Citric acid production by Aspergillus niger cultivated on Parkia biglobosa fruit pulp. International scholarly research notices, 2014. https://doi.org/10.1155/2014/762021
  19. Awad, S., Hassan, A. N., & Muthukumarappan, K. (2015). Application of exopolysaccharide-producing cultures in reduced-fat Cheddar cheese:Texture and melting properties. Journal of Dairy Science, 88(12), 98-106. https://doi.org/10.3168/jds.s0022-0302(05)73106-4
  20. Badle, S. S., Jayaraman, G., & Ramachandran, K. B. (2014). Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis. Bioresource technology, 163, 222-227. https://doi.org/10.1016/j.biortech.2014.04.027
  21. Balogh, G. T., Illés, J., Székely, Z., Forrai, E., & Gere, A. (2013). Effect of different metal ions on the oxidative damage and antioxidant capacity of Lacctic acid. Archives of Biochemistry and Biophysics, 410(1), 76-82. https://doi.org/10.1016/s0003-9861(02)00661-6
  22. Balows, A. (2013). Manual of clinical microbiology 8th edition: PR Murray, EJ Baron, JH Jorgenson, MA Pfaller, and RH Yolken, eds., ASM Press, pages, 2 vol, subject & author indices, ISBN: 1-555810255-4, US. Diagnostic Microbiology and Infectious Disease, 47(4), 625. https://doi.org/10.1016/s0732-8893(03)00160-3
  23. Barboza, N., & Usaga, J. (2020). Lactic Acid Bacteria (LAB) Applications in the Food Industry: Probiotic Foods-A Mini Review. J Nutr Food Sci 3: 019. Henry Publishing Groups Barboza N, et al, 3(1), 100019.
  24. Bartram, J., & Ballance, R. (Eds.). (2019). Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. CRC Press. https://doi.org/10.4324/9780203476796.ch2
  25. Belkheiri, A., Forouhar, A., Ursu, A. V., Dubessay, P., Pierre, G., Delattre, C & Michaud, P. (2021). Extraction, characterization, and applications of pectins from plant by-products. Applied Sciences, 11(14), 6596. https://doi.org/10.3390/app11146596
  26. Komesu, A., Johnatt, A, Luiza, H, Maria, R, Rubens, F. (2017). “Lactic acid manufacture,” Bio Resources 12(2), 4364-4389 .
  27. Bentley, R. W., Leigh, J. A., & Collins, M. D. (1991). Intrageneric structure of Streptococcus based on comparative analysis of small-subunit rRNA sequences. International Journal of Systematic and Evolutionary Microbiology, 41(4), 487-494. https://doi.org/10.1099/00207713-41-4-487
  28. Beynon, R. J., & Easterby, J. S. (2004). Buffer solutions: The basics. Taylor & Francis.Bitter, T., & Muir, H. M. (1962). A modified uronic acid carbazole reaction. Anal. Biochem., 4, 330-334.
    https://doi.org/10.1016/0003-2697(62)90095-7
  29. Blank, L. M., Hugenholtz, P., & Nielsen, L. K. (2008). Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci. Journal of Molecular Evolution, 67(1), 13-22. https://doi.org/10.1007/s00239-008-9117-1
  30. Blumenkrantz, N., & Asboe-hansen, G. (1973). New method for quantitative determination of huronic acids. Analytical biochemistry, 54 2, 484-9 . https://doi.org/10.1016/0003-2697(73)90377-1