Document Type : Research Paper

Authors

1 Department of Agronomic sciences, Faculty of natural and life sciences,Laboratory of Research on Phoeniculture "Phoenix", University of Kasdi Merbah-Ouargla, Algeria.

2 Department of Agronomic sciences, Faculty of Agronomy Sciences, Laboratory of Saharan bioresource, University of Kasdi Merbah-Ouargla, Algeria.

3 Department of Agronomic sciences, Faculty of natural and life sciences,Laboratory of Research on Phoeniculture "Phoenix", University of Kasdi Merbah-Ouargla, Algeria.of Agronomic sciences, University Kasdi Merbah

Abstract

The use of aqueous extracts as alternative solutions that significantly reduce to the damage caused by pests like Ectomyelois ceratoniae. This work presents in-vitro tests that are successfully applied to evaluate the ovicidal activity of four spontaneous plants aqueous extracts, as, Rosmarinus officinalis, Peganum harmala, Thymus vulgaris and Artemisia herba-alba againt the moth eggs. The results showed a highly significant effect for T. vulgaris and A. herba-alba, sometimes reaching 100%, followed by R. officinalis, then P. harmala which was not present any effect on this pest eggs. T. vulgaris and A. herba-alba showed a strong inhibition of egg hatching. It exceeds 93 % mortality for a concentration of 0.12 mL/mL. For R. officinalis at 0.18 mL/mL concentration present a 72% mortality. While at 0.12 mL/mL, the mortality was 40%.The lethal doses to inhibit 50 and 90 % of the eggs were estimated to confirm the efficiency of the aqueous extracts , stronger results shows, respectively (0.014 mL and 0.062 mL) from T. vulgaris and (0.019 mL and 0.069 mL) from A. herba-alba. This work originally explores the benefits of some kinds of plants that are largely available and inexpensive for the biotreatment of carob motheggs.

Keywords

Main Subjects

 [1] Chao, C. T., & Krueger, R. R. (2007). The Date Palm (Phoenix dactylifera L.): Overview of Biology, Uses, and Cultivation. Hort Science, 42(5), 1077‑1082. https://doi.org/10.21273/HORTSCI.42.5.1077.
 [2] Siddiq, M., & Greiby, I. (2013). Overview of Date Fruit Production, Postharvest handling, Processing, and Nutrition. In Dates (p. 1‑28). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118292419.ch1.
 [3] Idder, M. A., Idder-Ighili, H., Saggou, H., & Pintureau, B. (2009). Taux d’infestation et morphologie de la pyrale des dattes Ectomyelois ceratoniae (Zeller) sur différentes variantes du palmier dattier Phoenix dactylifera (L.). Cahiers Agricultures, 18(1), 63-71 (1). https://doi.org/10.1684/agr.2009.0270.
 [4] Idder, M. A., Ighili, H., Mitiche, B., & Chenchouni, H. (2015). Influence of date fruit biochemical characteristics on damage rates caused by the carob moth (Ectomyelois ceratoniae) in Saharan oases of Algeria. Scientia Horticulturae, 190, 57‑63. https://doi.org/10.1016/j.scienta.2015.04.015
[5] Reddy, K. O., Maheswari, C. U., Reddy, K. R., Shukla, M., Muzenda, E., & Rajulu, A. V. (2015). Effect of Chemical Treatment and Fiber Loading on Mechanical Properties of Borassus (Toddy Palm) Fiber/Epoxy Composites. International Journal of Polymer Analysis and Characterization, 20(7), 612‑626. https://doi.org/10.1080/1023666X.2015.1054084.
[6] Georghiou, G. P., Ariaratnam, V., Pasternak, M. E., & Lin, C. S. (1975). Organophosphorus Multiresistance in Culex pipiens quinquefasciatus in California12. Journal of Economic Entomology, 68(4), 461‑467. https://doi.org/10.1093/jee/68.4.461.
[7] Chen, C., Chen, G., Li, X., Guo, H., & Wang, G. (2017). The influence of chemical treatment on the mechanical properties of windmill palm fiber. Cellulose, 24(4), 1611‑1620. https://doi.org/10.1007/s10570-017-1205-1.
[8] Sghaier, S., Zbidi, F., & Zidi, M. (2009). Characterization of Doum Palm Fibers After Chemical Treatment. Textile Research Journal, 79(12), 1108‑1114. https://doi.org/10.1177/0040517508101623.
[9] Singh, D. (Éd.). (2014). Advances in Plant Biopesticides. Springer India. https://doi.org/10.1007/978-81-322-2006-0.
[10] Dimetry, N. Z. (2014). Different Plant Families as Bioresource for Pesticides. In D. Singh (Éd.), Advances in Plant Biopesticides (p. 1‑20). Springer India. https://doi.org/10.1007/978-81-322-2006 01.
[11] Leng, P., Zhang, Z., Pan, G., & Zhao, M. (2011). Applications and development trends in biopesticides. African Journal of Biotechnology, 10(86), 19864‑19873. https://doi.org/10.4314/ajb.v10i86.
[12] Rattan, R. S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29(9), 913‑920. https://doi.org/10.1016/j.cropro.2010.05.008
[13] Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1573), 1987‑1998. https://doi.org/10.1098/rstb.2010.0390.
 [14] Lee, H.-K., Park, C., & Ahn, Y.-J. (2002). Insecticidal activities of asarones identified in Acorus gramineus rhizome against Nilaparvata lugens (Homoptera : Delphacidae) and Plutella xylostella (Lepidoptera: Yponomeutoidae).Applied Entomology and Zoology, 37(3), 459‑464. https://doi.org/10.1303/aez.2002.459.
[15] Rapado, L. N., Nakano, E., Ohlweiler, F. P., Kato, M. J., Yamaguchi, L. F., Pereira, C. A. B., & Kawano, T. (2011). Molluscicidal and ovicidal activities of plant extracts of the Piperaceae on Biomphalaria glabrata (Say, 1818). Journal of Helminthology, 85(1), 66‑72. https://doi.org/10.1017/S0022149X10000258.
 [16] Elango, G., Mohana Roopan, S., Abdullah Al-Dhabi, N., Arasu, M. V., Irukatla Damodharan, K., & Elumalai, K. (2017). Cocos nucifera coir-mediated green synthesis of Pd NPs and its investigation against larvae and agricultural pest. Artificial Cells, Nano medicine, and Biotechnology, 45(8), 1581‑1587. https://doi.org/10.1080/21691401.2016.1262382.
[17] Baskar, K., & Ignacimuthu, S. (2013). Ovicidal activity of Couroupita guianensis (Aubl.) against cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Archives of Phytopathology and Plant Protection, 46(13), 1571‑1579. https://doi.org/10.1080/03235408.2013.771862.
[18] Tavares, W. S., Cruz, I., Petacci, F., Freitas, S. S., Serratilde, J. E., o, & Zanuncio, J. C. (2011). Insecticide activity of piperine : Toxicity to eggs of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Pyralidae) and phytotoxicity on several vegetables. Journal of Medicinal Plants Research, 5(21), 5301‑5306. https://doi.org/10.5897/JMPR.9000814.
 [19] Benelli, G., Govindarajan, M., Rajeswary, M., Vaseeharan, B., Alyahya, S. A., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., & Maggi, F. (2018). Insecticidal activity of camphene, zerumbone and α-humulene from Cheilocostus speciosus rhizome essential oil against the Old-World bollworm, Helicoverpa armigera. Ecotoxicology and Environmental Safety, 148, 781‑786. https://doi.org/10.1016/j.ecoenv.2017.11.044.
[20] Borges, D. G. L., Echeverria, J. T., Oliveira, T. L. de, Heckler, R. P., Freitas, M. G. de, Damasceno-Junior, G. A., Carollo, C. A., & Borges, F. de A. (2019). Discovery of potential ovicidal natural products using metabolomics. PLOS ONE, 14(1), e0211237. https://doi.org/10.1371/journal.pone.0211237.
[21] Vats, T. K., Rawal, V., Mullick, S., Devi, M. R., Singh, P., & Singh, A. K. (2019). Bioactivity of Ageratum conyzoides (L.) (Asteraceae) on feeding and oviposition behaviour of diamondback moth Plutella xylostella (L.) (Lepidoptera : Plutellidae). International Journal of Tropical Insect Science, 39(4), 311‑318. https://doi.org/10.1007/s42690-019-00042-5.
[22] Pavunraj, M., Baskar, K., Arokiyaraj, S., Rajapandiyan, K., Alqarawi, A. A., & Allah, E. F. A. (2020). Silver nanoparticles containing stearic acid isolated from Catharanthus roseus : Ovicidal and oviposition-deterrent activities on Earias vittella and ecotoxicological studies. Pesticide Biochemistry and Physiology, 168, 104640. https://doi.org/10.1016/j.pestbp.2020.104640.
[23] Essoung, F. R. E., Mba’ning, B. M., Tcho, A. T., Chhabra, S. C., Mohamed, S. A., Lenta, B. N., Ngouela, S. A., Tsamo, E., Hassanali, A., & Cox, R. J. (2020). Antifeedant and ovicidal activities of a new cassane and other compounds from Caesalpinia welwitschiana Oliv. and Caesalpinia bonduc L. against Tuta absoluta (Lepidoptera: Gelechiidae). Natural Product Research, 0(0), 1‑11. https://doi.org/10.1080/14786419.2020.1825424.
[24] Bader, A., Omran, Z., Al-Asmari, A. I., Santoro, V., De Tommasi, N., D’Ambola, M., Dal Piaz, F., Conti, B., Bedini, S., & Halwani, M. (2021). Systematic Phytochemical Screening of Different Organs of Calotropis procera and the Ovicidal Effect of Their Extracts to the Foodstuff Pest Cadra cautella. Molecules, 26(4), 905. https://doi.org/10.3390/molecules26040905.
 [25] Fragoso, D. F. M., Túler, A. C., Pratissoli, D., Carvalho, J. R., Valbon, W. R., Queiroz, V. T. de, Pinheiro, P. F., Costa, A. V., & Bueno, R. C. O. F. (2021). Biological activity of plant extracts on the small tomato borer Neoleucinodes elegantalis, an important pest in the Neotropical region. Crop Protection, 145, 105606. https://doi.org/10.1016/j.cropro.2021.105606.
 [26] Al-Izzi, M. A. J., Al-Maliky, S. K., & Jabbo, N. F. (1987). Culturing the Carob Moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae), on an Artificial Diet. Journal of Economic Entomology, 80(1), 277‑280. https://doi.org/10.1093/jee/80.1.277.
[27] Aouinty, B., Chennaoui, M., Mahari, S., Rihane, A., & Mellouki, F. (2018). Larvicidal effects of aqueous extract from Ricinus communis L. leaves against mosquito Culex pipiens : Mortality and histopathology of treated larvae. Journal of Materials and Environmental Sciences 9(2), 619-623 https://doi.org/10.26872/jmes.2018.9.2.68.
 [28] Kemassi, A., Bouziane, N., Boual, Z., & Ould El Hadj, M. D. (2014). Activité biologique des huiles essentielles de Peganum harmala L. (Zygophyllaceae) et de Cleome arabica L. (Capparidaceae) sur Schistocerca gregaria (Forskål, 1775). Phytothérapie, 12(6), 348‑353. https://doi.org/10.1007/s10298-014-0894-y.
[29] Evans, W. C. (2009). Trease and Evans’ Pharmacognosy. Elsevier Health Sciences.
 [30] Edeoga, H. O., Okwu, D. E., & Mbaebie, B. O. (2005). Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology, 4(7), 685‑688. https://doi.org/10.5897/AJB2005.000-3127.
[31] Harborne, A. J. (1998). Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Springer Science & Business Media.
[32] Kaleeswaran, G., Firake, D. M., Sanjukta, R., Behere, G. T., & Ngachan, S. V. (2018). Bamboo-Leaf Prickly Ash extract: A potential bio-pesticide against oriental leaf worm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Journal of Environmental Management, 208, 46‑55. https://doi.org/10.1016/j.jenvman.2017.12.017.
[33] Nattudurai, G., Baskar, K., Paulraj, M. G., Islam, V. I. H., Ignacimuthu, S., & Duraipandiyan, V. (2017). Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae. Environmental Science and Pollution Research, 24(2), 1619‑1629. https://doi.org/10.1007/s11356-016-7857-9.
[34] Parchande R. S., Jadhav G. S., Jadhav G. S., & Jadhav G. S., (2021). Ovicidal efficacy of plant extracts In Spodoptera frugiperda smith and Spodoptera litura fab. (Lepidoptera: Noctiduae). Indian Journal of Agricultural Research, 18(1b), 201-203.
 [35] Efat Abou-Fakhr Hammad, Amani Abbass, Muhammad Abbass, Zaynab Mohamad Haidar, Josiane El-Chemali, Youssef Abou Jawdeh, & Ludmilla Ibrahim. (2019). Bioactivity of Indigenous Melia azedarach Extracts against the Tomato Leaf miner, Tuta absoluta. Journal of Agricultural Science and Technology A, 9(1). https://doi.org/10.17265/2161-6256/2019.01.002.
[36] Çetin, H., & Güdek, M. (2020). Effect of Essential Oil from the Leaves of Rosemary Used in the Control of Callosobruchus maculatus (F.) on the Hydration Coefficient, Cookability, Taste and Color of the Edible Chickpea. Journal of Essential Oil Bearing Plants, 23(2), 301‑310. https://doi.org/10.1080/0972060X.2020.1748522.
 [37] Gorawade, V. B., Attar, U. A., & Shiragave, P.D., (2021). Insecticidal potential and thin layer chromatographic profiling of Chromolaena odorata L. and Leonotis nepetifolia (L) R.Br. leaf extracts against Helicoverpa armigera (Hubner). International Journal of Entomology Research, 6(2), 46-51.
[38] Valizadeh, B., Jalali Sendi, J., Oftadeh, M., & Ebadollahi, A., (2021). Ovicidal and Physiological Effects of Essential Oils Extracted from Six Medicinal Plants on the Elm Leaf Beetle, Xanthogaleruca luteola (Mull.). Agronomy, 11(10), 2015. https://doi.org/10.3390/agronomy11102015.
[39] Salhi, N., Rahmani, B., Mehan, M., Terzi, V., Amraoui, K., & Bissati, S., (2019). The antifungal activity of Artemisia herba-alba aqueous extract and essential oil against storage fungus Alternaria spp and Fusarium spp. Journal of Applied Biological Sciences, 13(2), 108-112.
[40] Draoui, M., Moussaoui, A., & Nahal Bouderba, N., (2020). Chemical compounds and Antibacterial activity of (Juniperus phoenicea L. And Rosmarinus officinalis L.) From Algerian Sahara. South Asian Journal of Experimental Biology, 10(2),77-82. https://doi.org/10.38150/sajeb.10(2).
[41] Bhaisare, D. B., Thyagarajan, D., Punniamurthy, N., Richard Churchil, R., & Ranganathan, V., (2014). Phytochemical analysis of four herbal seed extract and their use in poultry ration. Journal of Poultry Science and Technology, 2 (2), 34-37.
[42] Behidj-Benyounes, N., Dahmene, T., Allouche, N., & Laddad, A., (2014). Phytochemical, Antibacterial and Antifungal Activities of Alkaloids Extracted from Peganum harmala (Linn.) Seeds of South of Algeria. Asian Journal of Chemistry, 26(10), 2960-2964. https://doi.org/10.14233/ajchem.2014.16138.