Document Type : Research Paper

Authors

1 Laboratoire de Biodiversité Végétale : Conservation et Valorisation, Faculté des Sciences de la Nature et du Vivant, Université Djilali Liabès, Sidi Bel Abbes, Algérie.

2 Laboratory of Plant Biodiversity, Conservation and Valorization, Faculty of Nature and Life Sciences, Djilali Liabes University, Sidi Bel Abbes, Algeria.

Abstract

Atmospheric carbon sequestration in terrestrial ecosystems has become a significant challenge in the global framework of reducing greenhouse gas emissions. The main objective of this study is to provide estimation of organic carbon stocks in the agricultural soils of the Sidi Bel Abbes plain at various depths and according to different land use, namely cereals, olives and,viticulture. We have chosen two toposequences according to the two main types of soils that dominate, namely Chromic Cambisols and Calcareous Cambisols. Organic carbon was determined by the modified method of Walkley and Black. Stored organic carbon values varied significantly (p <0.05) between the different land uses and depth strata. The maximum value of 29.28 t ha-1 ± 2.29 was recorded under viticulture in the 30cm to 45cm stratum of Chromic Cambisols. The minimum value of 12.11 t ha-1 ± 0.17 was registered under cereal cultivation in the 0 to 15cm stratum of Calcaric Cambisols. With 15.84±3.59 t ha-1 as average under cereal cultivation, 19.49 t ha-1 ±5 under olive cultivation and 20.50 t ha-1 ±5.64 under viticulture. for the stratum ranging from 0 to 15 cm; The recorded stock is between 12.11 t ha-1± 0.17 and 23.60 t ha-1± 2.45. for the stratum ranging from 15 to 30 cm; The recorded stock is between 15.28 t ha-1± 1.25 and 27.62 t ha-1± 3.03 and for the stratum ranging from 30 to 45 cm The recorded stock is between 13.17 t ha-1±4 .18 and 13.17 t ha-1±4.18 .The average for all 54 samples is 18.61 t ha-1 ± t/ha. The soil organic carbon stock is 19.56 t ha-1 ±6 for Chromic Cambisols and 17.66 t ha-1 ±4 for Calcaric Cambisols.

Keywords

Main Subjects

[1] Duplessy, J. C. (2001). État des connaissances et incertitudes sur le changement climatique induit par les activités humaines[State of knowledge and uncertainties on human-induced climate change]. Comptes Rendus de l'Académie des Sciences-Séries IIA-Earth and Planetary Science, 333(12), 765-773. https://doi.org/10.1016/s1251-8050(01)01678-0.
[2] Pellerin, S., Bamière, L., Angers, D., Béline, F., Benoit, M., Butault, J. P., ... et Pardon, L. (2013). Quelle contribution de l'agriculture française à la réduction des émissions de gaz à effet de serre? Potentiel d'atténuation et coût de dix actions techniques [What contribution can French agriculture make to reducing greenhouse gas emissions? Mitigation potential and cost of ten technical actions] (Doctoral thesis, INRA). https://hal.archives-ouvertes.fr/hal-01186943.
[3] Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., ... et Zaehle, S. (2014). Global carbon budget 2013. Earth System Science Data, 6(1), 235-263.
[4] Saleh, M., El-Refaey, A. A., & Eldamarawy, Y. A. E. (2020). CO2 emissions and soil organic carbon in calcareous soils as affected by bonechar and phosphate rock. Egyptian Journal of Soil Science, 60(4), 365-375.
[5] Arrouays D, Balesdent J, Germon JC, Jayet PA, Soussana JF, Stengel P., (2002). Contribution à la lutte contre l’effet de serre. Stocker du carbone dans les sols agricoles de France ? Expertise scientifique collective [Contribution to the control of the greenhouse effect. Carbon storage in French agricultural soils? Collective scientific expertise]. Rapport INRA. Paris : Institut national de la recherche agronomique (Inra), 332 p.(Available : https://hal.inrae.fr/hal-02832401/document).
[6] Arrouays, D., Feller, C., Jolivet, C., Saby, N., Andreux, F., Bernoux, M., et Cerri, C. (2003). Estimation de stocks de carbone organique des sols à différentes échelles d’espace et de temps[Estimation of soil organic carbon stocks at different spatial and temporal scales]. Etude et gestion des sols, 10(4), 347-355.(Available :https://core.ac.uk/download/pdf/39844583.pdf).
[7] Le Roux, R. Barbault, J. Baudry, F. Burel, I. Doussan, E. Garnier, F. Herzog, S. Lavorel, R. Lifran, J. RogerEstrade, J.P. Sarthou, M. Trommetter (éditeurs), 2008. Agriculture et biodiversité. Valoriser les synergies [Agriculture and biodiversity. Enhancing synergies]. Expertise scientifique collective, synthèse du rapport, INRA (France). (pp. 113-p). (Available: https://oatao.univ-toulouse.fr/16331/1/LeRoux 16331.pdf).
[8] Walter, C., Bispo, A., Chenu, C., Langlais, A., et Schwartz, C. (2015). Les services écosystémiques des sols : du concept à sa valorisation. https://halshs.archivesouvertes.fr/halshs01137484/document.
 [9] Blanchart, E., et Trap, J. (2020). Intensifier les fonctions écologiques du sol pour fournir durablement des services écosystémiques en agriculture[Intensifying soil ecological functions for sustainable provision of ecosystem services in agriculture]. Étude et Gestion des Sols, 27, 121-134. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers20-04/010077640.pdf
 [10] Elbasiouny, H., & Elbehiry, F. (2019). Soil carbon and nitrogen stocks and fractions for improving soil quality and mitigating climate change. Egyptian Journal of Soil Science, 59(2), 131-144.
[11] Arrouays, D., Deslais, W., et Badeau, V. (2001). The carbon content of topsoil and its geographical distribution in France. Soil use and Management, 17(1),7-11. https://doi.org/10.1111/j.1475-2743.2001.tb00002.x.
[12] Tosser, V., Eglin, T., Bardy, M., Bessonet, A., Martin, M., (2013). Évaluation des stocks de carbone organique des sols cultivés de France Application de la méthodologie Tier 1 du Groupe d’experts Intergouvernemental sur l’Evolution du Climat (GIEC) aux sites du Réseau de Mesure de la Qualité des Sols (RMQS)[Assessment of organic carbon stocks in cultivated soils in France Application of the Tier 1 methodology of the Intergovernmental Panel on Climate Change (IPCC) to sites of the Réseau de Mesure de la Qualité des Sols (RMQS)]. Étude et Gestion des Sols, Volume 21, 2014 - pages 7 à 23. https://hal.inrae.fr/hal02629707/document
 [13] Derrien, D., Dignac, M. F., Basile-Doelsch, I., Barot, S., Cécillon, L., Chenu, C., ... et Barré, P. (2016). Stocker du C dans les sols. Quels mécanismes, quelles pratiques agricoles[Storing C in the soil. Which mechanisms, which agricultural practices, which indicators], quels indicateurs, 193-224. http://www.afes.fr/publications/revue-etude-et-gestion-des-sols/volume-23-numero-1
 [14] Kell, D. B. (2012). Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1595), 1589-1597.
[15] FAO (2017). Carbone Organique du Sol: une richesse invisible[Soil Organic Carbon: an invisible treasure]. Organisation des Nations Unies pour l’alimentation et l’agriculture, Rome, Italie. https://www.fao.org/3/i6937f/i6937f.pdf
 [16] Jaouadi, J., Aichi, H., Ben Hassine, H., Hatira, A., et Balesdent, J. (2019). Carbon Turnover in a Sorghum-cultivated Semi-arid Mediterranean Soil Profile. Communications in Soil Science and Plant Analysis, 50(19), 2457-2468.
[17] Lefevre, C., Rekik, F., Alcantara, V., et Wiese, L. (2017). Carbone organique du sol: Une richesse invisible. Organisation des Nations Unies pour l’alimentation et l’agriculture, Rome, Italie.
[18] El-Ramady, H., Brevik, E. C., Elsakhawy, T., Omara, A. E. D., Amer, M., Abowaly, M., ... & Prokisch, J. (2022). Soil and Humans: A Comparative and A Pictorial Mini-Review. Egypt. J. Soil Sci, 62(2), 41-53.
[19] Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., et Smith, P. (2016). Climate-smart soils. Nature, 532(7597),49-57. https://doi.org/10.1038/nature17174.
[20] Arabi, M., et Roose, E. (2004). Influences du système de production et du sol sur l'érosion en nappe, le ruissellement, le stock et les pertes de carbone par érosion en zone de montagne méditerranéenne (Médéa, Algérie) [Influences of production system and soil on water erosion, runoff, carbon stock and losses by erosion in Mediterranean mountain areas (Medea, Algeria)]. Bulletin du Réseau Erosion, (22), 166-175.doi: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers09-00/010034962.pdf
 [21] Boutkhil, M., Amer, H., et Eric, R. (2004). Effet des systemes de gestion sur le ruissellement, l’érosion et le stock du carbone dans les monts de beni-chougrane-algerie[Effect of management systems on water erosion and carbon stock in the beni chougrane-algeria mountains]. Bulletin du Réseau Erosion, (23), 416-430.  https://www.researchgate.net/publication/40438350
 [22] Morsli, B., Mazour, M., Mededjel, N., Halitim, A., et Roose, E. (2004). Effet des systèmes de gestion sur l'érosion et le stock du carbone dans les monts du Tell occidental d'Algérie. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-11/010053285.pdf
 [23] Daroui Atika, Weisskopf Peter, Oberholzer Hans-Rudolf, Benslama, Mohamed. (2018), Evaluation of total Carbon and total Nitrogen content in two Algeria regions under the effect of three tillage systems. Int. J. Biosci. Vol. 12, No. 1, p. 410-416, 2018. http://www.innspub.net.
[24] Bounouara, Z., Chevallier, T., Balesdent, J., Toucet, J., Sbih, M., Bernoux, M., ... et Bensaid, R. (2017). Variation in soil carbon stocks with depth along a toposequence in a sub-humid climate in North Africa (Skikda, Algeria). Journal of Arid Environments, 141,25-33. https://doi.org/10.1016/j.jaridenv.2017.02.001.
 [25] Guggenberger, G., Christensen, B. T., et Zech, W. (1994). Land-use effects on the composition of organic matter in particle-size separates of soil: I. Lignin and carbohydrate signature. European journal of soil Science, 45(4), 449-458.
[26] Post, W. M., et Kwon, K. C. (2000). Soil carbon sequestration and land-use change: processes and potential. Global change biology, 6(3), 317-327.https://doi.org/10.1046/j.1365-2486.2000.00308.x
[27] Abera, Y., et Belachew, T. (2011). Effects of land use on soil organic carbon and nitrogen in soils of bale, Southeastern Ethiopia. Tropical and Subtropical Agroecosystems, 14(1),229-235.  https://www.researchgate.net/publication/279503917.
[28] Faraoun, F., et Benabdeli, K. (2010). Cartographie et caractérisation physico-chimique des sols de la plaine de Sidi Bel Abbès (Algérie occidentale)[Mapping and physico-chemical characterisation of the soils of the Sidi Bel Abbès plain (western Algeria)]. Afr. Sci, 6(3),18-26. http://www.afriquescience.info/docannexe.php?id=2108
 [29] Faraoun, F., et Benabdeli, K. (2011). Contribution à l’étude de la dynamique des espèces végétales envahissantes face aux fluctuations des précipitations et des températures dans la plaine de Sidi Bel Abbes (Algérie)[Contribution to the study of the dynamics of invasive plant species in response to fluctuations in rainfall and temperature in the Sidi Bel Abbes plain (Algeria)].Mediterranea, Serie de estudios Biologicos, 2011 Época II nº 22, 126-148.
[30] YAHIAOUI ,D .(2015). Impact des variations climatiques sur l’agriculture en Oranie [Impact of climate variations on agriculture in Oranie]. Mémoire de magister en biologie . Université Oran 1 .algeria .
 [31] Jones, A., Breuning-Madsen, H., Brossard, M., Chapelle, J., Dampha, A., Deckers, J., Dewitte, O., Dondeyne, S., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Micheli, E., Montanarella, L., Spaargaren, O., Thiombiano, L., Van Ranst, E., Yemefack, M., Zougmoré R., (eds.),2015, Atlas des sols d’Afrique. Commission européenne, Bureau des publications de l’Union européenne, Luxembourg. 176 pp.
[32] Faraoun, F. (2002). Cartographie des sols de la plaine de Sidi Bel Abbes et évaluation des potentialités édaphiques[Soil mapping of the Sidi Bel Abbes plain and evaluation of soil potential]. Mémoire de magister en écologie Appliquée. Université Djillali Liabes de Sidi Bel Abbes.
[33] Belahcen, N. F., (2019). Mise en valeur des potentialités agricole des zones de montagne ; cas des monts de Tessala et Beni Chougrane dans la wilaya de Sidi Bel Abbes (Algérie occidentale)[Development of the agricultural potential of mountain areas ; case of the mountains of Tessala and Beni Chougrane in the wilaya of Sidi Bel Abbes] (Doctoral thesis).
[34] Gillman, G. P., Sinclair, D. F., et Beech, T. A. (1986). Recovery of organic carbon by the Walkley and Black procedure in highly weathered soils. Communications in Soil Science and Plant Analysis, 17(8),885-892. https://doi.org/10.1080/00103628609367759
[35] Sparks, D., Page, A., Helmke, P., Loeppert, R., Soltanpour, P., Tabatabai, M., et al. (1996). Methods of soil analysis, part 3. Chem. Methods 1085–1121.https://doi.org/10.2136/sssabookser5.3
 [36] Thomas, G. W. (1996). Soil pH and soil acidity. Methods Soil Analys 5, 475–490.
doi:10.2136/sssabookser5.3.c16.
[37] Rhoades, J. (1996). Salinity: electrical conductivity and total dissolved solids.Methods Soil Analys. 5, 417–435. 10.2136/msa2015.0039
[38] Blake, G. R., et Hartge, K. H. (1986). Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 363-375. https://doi.org/10.2136/sssabookser5.1.2ed.c13
 [39] Marco, P., Henry, M., Blavet, D., et Bernoux, M. (2010). Variation des stocks de carbone organique du sol après plantation forestière: essai de méta-analyse incluant quelques situations d’Amérique latine[Variation in soil organic carbon stocks after forest plantations: a meta-analysis test including some Latin American situations]. Bois et forêts des tropiques, 305, 21-32.
[40] Chevallier T., Razafimbelo T. M., Chapuis-Lardy L., Brossard M., Ed., 2020. Carbone des sols en Afrique. Impacts des usages des sols et des pratiques agricoles[Soil carbon in Africa. Impacts of land use and agricultural practices]. Rome/Marseille, FAO/IRD, 268 p., https://doi.org/10.4060/cb0403fr
 [41] Bounouara, Z. (2018). Origine et évolution de la matière organique dans les sols des zones subhumides (Thèse de doctorat, Université de Batna 1-Hadj Lakhder)[Origin and evolution of organic matter in soils of sub-moist areas in the Skikda region case study].   http://dspace.univ-batna.dz/bitstream/123456789/594/1/sva%20Zohra%20Bounouara.pdf
 [42] Addinsoft.(2014) XLstat: Data analysis and statistical application available for Microsoft Excel. (Computer software) Version 2014.5.03, United Kingdom.
[43] FARAOUN, F (2014). Evaluation de la fertilité et cartographie des sols agricoles: cas de la plaine de Sidi Bel-Abbès [Fertility assessment and mapping of agricultural soils: case of the plain of Sidi Bel-Abbès] )Thèse de doctorat). Université Djillali Liabes de Sidi Bel Abbes.
[44] Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124(1-2), 3-22. http://doi:10.1016/j.geoderma.2004.03.005.
[45] Hanana, M., Hamrouni, L., Ben-Hamed, K., Ghorbel, A., et Abdelly, C. (2014). Comportement et stratégies d’adaptation de vignes franches de pied sous stress salin[Behaviour and adaptation strategies of free-standing vines under salt stress]. Journal of New Sciences, 3(4), 29-44.
[46] Rowley, M. C., Grand, S., et Verrecchia, É. P. (2018). Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, 137(1), 27-49.https://doi.org/10.1007/s10533-017-0410-1
[47] Yang S, Cammeraat E, Jansen B, Cerli C, Kalbitz K (2016) Organic carbon stabilization of soils formed on acidic and Calcaric bedrocks in Neotropical alpine grassland, Peru. EGU General Assembly 2016, held 17-22 April, 2016 in Vienna, Austria. https://meetingorganizer.copernicus.org/EGU2016/EGU2016-646.pdfX
 [48] O’Brien SL, Jastrow JD, Grimley DA, Gonzalez-Meler MA (2015) Edaphic controls on soil organic carbon stocks in restored grasslands. Geoderma 251–252:117–123.  https://doi.org/10.1016/j.geoderma.2015.03.023
 [49] Li D, Wen L, Yang L, Luo P, Xiao K, Chen H, Zhang W, He X, Chen H, Wang K (2017) Dynamics of soil organic carbon and nitrogen following agricultural abandonment in a karst region. J Geophys Res Biogeosci 122:230–242. https://doi.org/10.1002/2016jg003683
[50] Le Tacon, F. (1978). La présence de calcaire dans le sol. Influence sur le comportement de l'Epicéa commun (Picea excelsa Link.) et du Pin noir d'Autriche (Pinus Nigra nigricans Host.)[The presence of limestone in the soil. Influence on the behaviour of Common Spruce (Picea excelsa Link.) and Austrian Black Pine (Pinus Nigra nigricans Host.)]. In Annales des Sciences forestières (Vol. 35, No. 2, pp. 165-174). EDP Sciences. https://doi.org/10.1051/forest/19780205
[51] Li, G., Zhang, C., Zhang, H., Gilkes, R. J., et Prakongkep, N. (2010). Soil inorganic carbon pool changed in long-term fertilization experiments in north China plain. World Cong Soil Sci Soil Solut Changing World, 19, 220-223.
[52] Poirier, V., Roumet, C., et Munson, A. D. (2018). The root of the matter: linking root traits and soil organic matter stabilization processes. Soil Biology and Biochemistry, 120, 246-259. https://doi.org/10.1016/j.soilbio.2018.02.016.
 [53] Guo, L. B., Halliday, M. J., Siakimotu, S. J. M., et Gifford, R. M. (2005). Fine root production and litter input: its effects on soil carbon. Plant and Soil, 272(1), 1-10.
[54] De Deyn, G. B., Cornelissen, J. H., et Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology letters, 11(5), 516-531. https://doi.org/10.1111/j.1461-0248.2008.01164.x.
 [55] Kögel-Knabner, I. (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil biology and biochemistry, 34(2), 139-162.
[56] Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., et Schulze, E. D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108(3), 389-411.
[57] Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., et Tanabe, K. Wagner, F. (Ed.). (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry. Japan: Institute for Global Environmental Strategies IGES. http://www.ipcc-nggip.iges.or.jp.
 [58] Mohanty, Anita et Sahu, Chandan et Nayak, Hemendra et Sahu, Sanjat. (2017). Soil carbon sequestration potential of Different land use and land cover systems in Eastern plateau and hills agroclimatic zone of India. Fresenius Environmental Bulletin. 26. 8263 - 8269.(Available: https://www.researchgate.net/profile/Ugur.
 [59] Lützow, M. V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., et Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review. European journal of soil science, 57(4), 426-445.
[60] Rumpel, C., and Kögel-Knabner, I. (2011). Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and soil, 338(1), 143-158. https://doi.org/10.1007/s11104-010-0391-5.
 [61] Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., ... et Field, D. J. (2017). Soil carbon 4 per mille. Geoderma, 292, 59-86.
[62] Akpa, S. I., Odeh, I. O., Bishop, T. F., Hartemink, A. E., et Amapu, I. Y. (2016). Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma, 271,202-215. https://doi.org/10.1016/j.geoderma.2016.02.021.
 [63] Brahim, N., Ibrahim, H., et Hatira, A. (2014). Tunisian Soil Organic Carbon Stock–Spatial and Vertical Variation. Procedia Engineering, 69, 1549-1555. https://doi.org/10.1016/j.proeng.2014.03.154.
 [64] Rodríguez-Murillo, J. C. (2001). Organic carbon content under different types of land use and soil in peninsular Spain. Biology and Fertility of Soils, 33(1),5361. https://doi.org/10.1007/s003740000289.
 [65] Luo, Z., Wang, E., et Sun, O. J. (2010). Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: a review and synthesis. Geoderma, 155(3-4), 211-223.
[66] Brahim, N., Bernoux, M., Blavet, D., et Gallali, T. (2010). Tunisian soil organic carbon stocks. International Journal of Soil Science, 5(1), 34-40.https://doi.org/10.3923/ijss.2010.34.40
[67] FAO and CMCC. 2017. Global Soil Organic Carbon Database (at 30 arcsec). Rome: Food and Agriculture Organization of the United Nations and Euro-Mediterranean Center on Climate Change Foundation.  https://www.fao.org/3/i7292e/i7292e.pdf.
 [68] Munoz-Rojas, M., Jordán, A., Zavala, L. M., Rosa, D. D. L., Abd-Elmabod, S. K., et Anaya-Romero, M. (2012). Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain). Solid-Earth, 3(2),375-386. https://doi.org/10.5194/se-3-375-2012.
 [69] Jobbagy, E. G., & Jackson, R. B. (2001). The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry, 53(1), 51-77. https://doi.org/10.1023/a:1010760720215
[70] Schrumpf, M., Schumacher, J., Schöning, I., et Schulze, E. D. (2008). Monitoring carbon stock changes in European soils: process understanding and sampling strategies. In The continental-scale greenhouse gas balance of Europe (pp. 153-189). Springer, New York, NY. https://doi.org/10.1007/978-0-387-76570-9_9.
 [71] Maeght, J. L., Rewald, B., et Pierret, A. (2013). How to study deep roots—and why it matters. Frontiers in plant science, 4, 299.
[72] Bai, Y., et Zhou, Y. (2020). The main factors controlling spatial variability of soil organic carbon in a small karst watershed, Guizhou Province, China. Geoderma, 357,113938. https://doi.org/10.1016/j.geoderma.2019.113938.
 [73] Albaladejo, J., Ortiz, R., Garcia-Franco, N., Navarro, A. R., Almagro, M., Pintado, J. G., et Martínez-Mena, M. (2013). Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. Journal of Soils and Sediments, 13(2), 265-277. https://doi.org/10.1007/s11368-012-0617-7.
[74] Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European journal of soil science, 47(2), 151-163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x.
 [75] Batjes, N. H. (2006). Soil carbon stocks of Jordan and projected changes upon improved management of croplands. Geoderma, 132(3-4), 361-371. https://doi.org/10.1016/j.geoderma.2005.05.013.