Document Type : Research Paper

Authors

1 Forestry department, Salahaddin University, Erbil- Iraq

2 Department of Biology/ College of Education/ Salahaddin University- Erbil

Abstract

Early drought is a great threat limiting wheat production in semi-arid region resulted in poor emergence and weak seedlings. This research experiment attempts to evaluate the drought-tolerance potential of four local Triticum durum L. genotypes at germination stage. Hawler-1, Akassad, Semito and Barcelona subjected to drought stress of about 25 % of the soil water holding capacity (SWHC) and compared to their control 100 % SWHC in a factorial experiment designed in a complete randomization. Under stressed condition Semito genotype showed the significantly highest final germination percentage 54.66 %. Lowest MGT was 12 recorded by Semito and Aksaad. The heaviest roots, shoot dry weight and root: shoot ratio were observed in Akassad; 4.09 and 3.95 g and 1.28 respectively. The longest shoot averaged over all treatments was observed in Semito (23.05 cm). The highest leaves relative water content (LRWC) and membrane stability index (MSI) were 56.39 and 62.05 recorded by Semito. Akassad had the highest content of chlorophyll a, b and total; 2.40, 1.51 and 3.91 mg/ g fresh weight. Highest significant proline content was 0.548 mg/ g fresh and sugar content was 2.94 mg g dry weight accumulated in Semito leaves. Genotypes with a fast germination, more vigorous root system and highest root: shoot ratio are very desirable for the rapid establishment of seedlings and could have best physiological response as well as accumulate more osmoticum in their cytosol. Thus, Akassd and Semito had best potential adaptability to drought stress at early growth stage.

Keywords

Main Subjects

[1]       Abdel-Ghani, A.H., Al-Dalain, S.A., Thaher, N.H., Owais, S.J., Sarayrh, S.I., Mayta, R. and Duwayri, M.A. (2020). The response of durum wheat varieties from semi-arid environment to drought stress on germination and at the seedling stage. Bulgarian Journal of Agricultural Science, 26(2): 299-308.
[2]       Abdoli, M. and Saeidi, M. (2012). Effects of water deficiency stress during seed growth on yield and its components, germination and seedling growth parameters of some wheat cultivars. International Journal of Agriculture and Crop Sciences, 4(15): 1110-1118.
[3]       Ahmad, N.S., S.H.S. Kareem, K.M. Mustafa and Ahmad, D.A (2017). Early screening of some Kurdistan wheat (Triticum aestivum L.) cultivars under drought stress. J. Agric. Sci. 9(2): 88-103.
[4]       Alexieva, V., I. Sergiev, S. Mapelli, and Karanov E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment 24(12): 1337-1344.
[5]       Ananthi, K., Vijayaraghavan, H., Karuppaiya, M. and Anand, T. (2013). Drought-induced changes in chlorophyll stability index, relative water content and yield of cotton genotypes. Insight Botany, 3(1): 1-5.
[6]       Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C. and Lei, W. (2011). Morphological, physiological, and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9): 2026-2032.
[7]       Arjenaki, F.G., Jabbari, R., Morshedi, A. (2012). Evaluation of drought stress on relative water content, chlorophyll content and mineral elements of wheat (Triticum aestivum L.) varieties. International Journal of Agriculture and Crop Sciences, 4(11):726-9.
[8]       Ashraf, M. and Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2): 206-216.
[9]       Assmann, S.M. and Haubrick, L.L. (1996). Transport proteins of the plant plasma membrane. Current opinion in cell biology, 8(4): 458-467.
[10]   BAĞCI, S.A., Ekiz, H. and Yilmaz, A. (2003). Determination of the salt tolerance of some barley genotypes and the characteristics affecting tolerance. Turkish Journal of Agriculture and Forestry, 27(5): 253-260.
[11]   Bates, L.S., Waldren, R.P. and Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39(1): 205-207.
[12]   Białecka, B. and Kępczyński, J. (2010). Germination, α-, β-amylase and total dehydrogenase activities of Amaranthus caudatus seeds under water stress in the presence of ethephon or gibberellin A3. Acta Biologica Cracoviensia s. Botanica, 52(1): 7-12.
[13]   Chachar, M. H., Chachar, N. A., Chachar, S. D., Chachar, Q. I., Mujtaba, S. M. and Yousafzai, A. (2014). In-vitro screening technique for drought tolerance of wheat (Triticum aestivium L.) genotypes at early seedling stage. Journal of agricultural technology. 10(6): 1439-1450.
[14]   Chorfi, A. and Taïbi, K. (2011). Biochemical screening for osmotic adjustment of wheat genotypes under drought stress. Tropicult, 29(2): 82-87.
[15]   Dodig, D., M. Zoric, M. Jovic, V., Kandic, R., Stanisavljevic and G. Šurlan-Momirovic. (2014). Wheat seedlings growth response to water deficiency and how it correlates with adult plant tolerance to drought. J. Agric. Sci. 153: 466-480.
[16]   DuBois, M., 1956. Colorimetric method for determination of sugars and related substances. Anal chem, 28: 350-356.
[17]   Faisal, S., Mujtaba, S.M., Khan, M.A. and Mahboob, W.A.J.I.D. (2017). Morpho-physiological assessment of wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage. Pak. J. Bot, 49(2): 445-452.
[18]   Farshadfar, E., Rad, A.A. and Kianifar, S. (2015). Genetic analysis of physiological criteria of drought tolerance in bread wheat under rainfed conditions. In Biological Forum, 7(1): 912-19.
[19]   Figueroa-Bustos, V., Palta, J.A., Chen, Y. and Siddique, K.H., 2018. Characterization of root and shoot traits in wheat cultivars with putative differences in root system size. Agronomy, 8(7), p.109.
[20]   Gholamin and MajidKhayatnezhad, R. (2010). Study of some physiological responses of drought stress in hexaploid and tetraploid wheat genotypes in Iran. Middle-East Journal of Scientific Research.6 (3): 246-50.
[21]   Ghotbi‐Ravandi, A.A., Shahbazi, M., Shariati, M. and Mulo, P. (2014). Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. Journal of Agronomy and Crop Science, 200(6): 403-415.
[22]   Hofmann, R. W., B. D. Campbell, S. J. Bloor, E. E. Swinny, K. R. Markham, K. G. Ryan, and D. W. Fountain (2003). Responses to UV‐B radiation in Trifolium repens L.–physiological links to plant productivity and water availability. Plant, Cell & Environment 26(4): 603-612.
[23]   Hussein, Z.K. and Khursheed, M. Q. (2014). Effect of foliar application of ascorbic acid on growth, yield components and some chemical constituents of wheat underwater stress conditions. Jordan Journal of Agricultural Sciences, 10(1).
[24]   Kameli, A. and Lösel, D.M. (1995). Contribution of carbohydrates and other solutes to osmotic adjustment in wheat leaves under water stress. Journal of Plant Physiology, 145(3), pp.363-366.
[25]   Karimpour, M., 2019. Effect of drought stress on RWC and chlorophyll content on wheat (Triticum durum L.) genotypes. World. Ess. J, 7: 52-56.
[26]   Liu M., Li M., Liu K. & Sui N. (2015). Effects of drought stress on seed germination and seedling growth of different maize varieties. JAS, 7(5): 231-240
[27]   Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P.C. and Sohrabi, Y., 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea genotypes. Australian Journal of Crop Science, 4(8): 580.
[28]   Marti, J. and Slafer, G.A. (2014). Bread and durum wheat yields under a wide range of environmental conditions. Field Crops Research, 156: 258-271.
[29]   Mattana, M., E. Biazzi, R. Consonni, F. Locatelli, C. Vannini, S. Provera and I. Coraggio (2005). "Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana." Physiologia Plantarum 125(2): 212-223.
[30]   Mohammed, A. K. and Kadhem F. A. (2017). Screening drought tolerance in bread wheat genotypes (Triticum aestivum L.) using drought indices and multivariate ANALYSIS. The Iraqi Journal of Agricultural Sciences 48: (Special Issue): 41-51.
[31]   Ommen, O.E., Donnelly, A., Vanhoutvin, S., Van Oijen, M. and Manderscheid, R. (1999). Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the ‘ESPACE-wheat’project. European Journal of Agronomy, 10(3): 197-203.
[32]   Othmani, A., Ayed, S.O.U.R.O.U.R., Chamekh, Z.O.U.B.E.I.R., Slama-Ayed, O.L.F.A., Teixeira Da Silva, J.A., Rezgui, M., Slim-Amara, H. and Ben Younes, M. (2021). Screening of seedlings of durum wheat (Triticum durum Desf.) cultivars for tolerance to peg-induced drought stress. Pakistan Journal of Botany, 53: 823-832.
[33]   Qadir, S.A. (2018). Wheat Grains Germination and Seedling Growth Performance under Drought Condition. Basrah Journal of Agricultural Sciences, 31(2): 44-52.
[34]   Qadir, S.A., Khursheed, M.Q., Rashid, T.S. and Awla, H.K. (2019). Abscisic acid accumulation and physiological indices in responses to drought stress in wheat genotypes. The Iraqi Journal of Agricultural Science, 50(2): 705-712.
[35]   Rana, M.S., M.A. Hasan, M.M. Bahadur and M.R. Islam (2017). Effect of polyethylene glycol induced water stress on germination and seedling growth of wheat (Triticum aestivum L.). The Agriculturists, 15(1): 81-91.
[36]   Razzaq, A., Q. Ali, A. Qayyum, I. Mahmood, M. Ahmad, and M. Rasheed (2013). Physiological responses and drought resistance index of nine wheat (Triticum aestivum L.) cultivars under different moisture conditions. Pakistan Journal of Botany 45(S1): 151-155
[37]   Sahnoune, M., Adda, A., Soualem, S., Harch, M. K. & Merah, O. (2004). Early water-deficit effects on seminal roots morphol­ogy in barley. C. R. Biol., 327: 389-398.
[38]   Sánchez-Rodríguez, E., M. Rubio-Wilhelmi, L. M. Cervilla, B. Blasco, J. J. Rios, M. A. Rosales,... and J. M. Ruiz (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant science 178(1): 30-40.
[39]   Tripathy, J. N., J. Zhang, S. Robin, T. T. Nguyen, and H. T. Nguyen (2000). QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theoretical applied genetics 100(8): 1197-1202.).
[40]   Xu, W., K. Cui, A. Xu, L. Nie, J. Huang and S. Peng (2015). Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol. Plant. 37: 9.
[41]   Zada, A., Ali, A., Shah, A., Gill, S., Hussain, I., Ullah, Z. and Sher, H. (2020). Physiological and Molecular Characterization of Bread Wheat (Triticum aestivum L.) For Drought Resistance. Authorea Preprints.
[42]   Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol., 53, 247–273.