Document Type : Review Paper

Authors

1 Faculty of Agriculture, University of Aleppo, Syria.

2 animal production , facility of college , university of Al-Qadisiah , Iraq

3 University of Al-Muthanna, Faculty of Agriculture, Department of Animal Production, Iraq.

4 University of Gazi, Faculty of Education, Department of Sciences, Turkey.

5 University of Damascus, Faculty of Agriculture, Department of Animal Production, Syria

Abstract

This review focused on highlighting the importance of the biochemical role of some additives that have a stimulating impact on in vitro maturation (IVM) of farm animal oocytes. The supportive role that these additives played has led to a noticeable increase in embryos yields. Nevertheless, there are some considerations that must be taken into account for the process of producing embryos in vitro to function optimally. Among the hormones, the famous gonadotropic hormones (follicle-stimulating hormone (FSH), luteinizing hormone (LH) and chorionic gonadotropin hormone (CG)), estradiol and growth hormone (GH) occupied a wide area in IVM, but the usage of these hormones still limited to specific concentrations as the increase in their concentrations did not give the desired effect. Due to the historical popularity and the primary role of cysteamine as an antioxidant agent, its usage has increased recently. However, this usage has also remained limited to specific concentrations, as are hormones. Besides, cysteamine was an important reason for obtaining high rates of embryos in the blastocyst stage. Conversely, there was a reservation in the use of follicular fluid (FF) and fetal calf serum (FCS). Although these two elements are rich in hormones, proteins, lipids and various growth factors, FF contains factors that inhibit the maturation of oocytes. Moreover, FCS has a negative role in the quality of resulted embryos because of the high levels of lipids (triglycerides).

Keywords

Main Subjects

[1]       Betteridge, K. J. 2006. Farm animal embryo technologies: Achievements and perspectives. Theriogenology, 65(5), 905–913. doi: 10.1016/j.theriogenology.2005.09.005 
[2]       Wu, B.; Zan, L. (2011). Enhance Beef Cattle Improvement by Embryo Biotechnologies. Reproduction in Domestic Animals, 47(5), 865–871. doi:10.1111/j.1439-0531.2011. 01849.x 
[3]       Mardenli, O.; Al-Kerwi, M.SM.; Alolo, Y. 2021.The effect of follicle size and cryoprotectants on nuclear maturation and early embryonic development of vitrified - thawed Awassi sheep oocytes (Ovis aries). Vet. arhiv 91, 483-493, 2021DOI: 10.24099/vet.arhiv.1063
[4]       Mardenli, O.; Al-Kerwi, M. S. M.; Hassooni, H.A. 2020. Efficiency of dimethyl sulphoxide and ethylene glycol on subsequent development of vitrified Awassi sheep embryos. JITV, 25 (2), 60-67. DOI: http://dx.doi.org/10.14334/jitv.v25i2.
[5]       Mardenli, O. 2020. Role of Follicle Size, IGF-I, Glucose and Hormones on Nuclear Maturation Events of Awassi Sheep Oocytes (Ovis aries). ISPEC Journal of Agricultural Sciences, 4(4), 732–746. https://doi.org/10.46291/ISPECJASvol4iss4pp732-746
[6]       Mermillod, P.;Oussaid, B.; Cognié, Y. 1999. Aspects of follicular and oocyte maturation that affect the developmental potential of embryos. J Reprod Fertil Suppl,  54:449-60. PMID:10692875
[7]       Kouamo, J.; Kharche, S. D. (2014). Dose dependent effect of pregnant mare serum gonadotropin and human chorionic gonadotropin on in vitro maturation of goat oocytes. Indian Journal of Animal Sciences, 84(4), 410–414.
[8]       Kalita, K.; Deka, B. C.;  Biswas, R.K.; Barua, P.M.; Borah, P.; Dutta, D.J.Das, S.K. 2019. Effect of Different Types of In Vitro Maturation Medium (IVM) on Cumulus Cell Expansion and Nuclear Maturation Rate of Non-vitrified and Post Vitrified-Thawed Porcine Follicular Oocytes. J Fertil In Vitro IVF Worldw Reprod Med Genet Stem Cell Biol, 6(1), 1000211. https://doi.org/10.4172/2375-4508.1000211
[9]       Mardenli, O.; Al-Kerwi, M. S. M.; Alolo, A.Y. 2020. Effect of combination of follicle size, FSH and cysteamine on in vitro production sheep embryos. JITV, 25(3), 131-138. DOI: http://dx.doi.org/10.14334/jitv.v25i3.2517
[10]   Mardenli, O.; Hassooni, H.A.; Al-Kerwi, M. S. M. 2021. Effects of Epidermal Growth Factor and Myo-Inositol on Nuclear Configuration and Subsequent Embryonic Development of Sheep Oocytes.  Turkish Journal of Agriculture - Food Science and Technology, 9(12), 2147-2152, 2021DOI: https://doi.org/10.24925/turjaf.v9i12.2147-2152.4358
[11]   Mardenli, O.; Hassooni, H.A.; Al-Kerwi, M. S. M. 2021. Effects of Various Levels of Luteinizing Hormone and Caprine Follicular Fluid on In Vitro Embryo Production of Shami Goat. ISPEC Journal of Agricultural Sciences, 5(3), 575–584. https://doi.org/10.46291/ISPECJASvol5iss3pp575-584
[12]   Mardenli, O.; Mohammad, M. S.; Hassooni, H.A.; Aryan, H.2019. Effects of Season, Ewe Age and Their Interactions On in vitro Embryo Production of Syrian Awassi Sheep. Plant Archives, 19 (1), 1292-1298.
[13]   Kitagawa, Y.; Suzuki, K.; Yoneda, A.; Watanabe, T. 2004. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology, 62(7), 1186–1197. doi: 10.1016/j.theriogenology.2004.01.011 
[14]   Ginther, O. J.; Beg, M. A.; Gastal, E. L.; Gastal, M. O.; Baerwald, A. R.; Pierson, R. A. 2005. Systemic concentrations of hormones during the development of follicular waves in mares and women: a comparative study. Reproduction, 130(3), 379–388. doi:10.1530/rep.1.00757 
[15]   Warnes, G.M.; Moor, R.M.; Johnson, M.H. 1977. Changes in protein synthesis during maturation of sheep oocyte. in vivo and in vitro. J. Repord. Fert, 49, 331-335.
[16]   Gordon, I. 1994. Production of cattle embryo in the laboratory. CAB International, walling ford, OXON OX108DE, U.K. 672 pp.
[17]   Donaldson, L.E.; Hansel, W.; VanVleck, L.D. 1965. The lute trophic properties of luteinizing hormone and the nature of oxytocin induced luteal inhibition in cattle. J. Dairy. Sci, 48, 331 (Abstr.).
[18]   Moor, R. M.; Polge, C.; Willadsen, S. M. 1980. Effects of follicular steroids on the maturation and fertilization of mammalian oocytes. J. Embryol. Exp. Morph, 56, 319-335.
[19]   Avery. B.; Hay - Schmidt, A.; Hyttel, P.; Greve, T. 1998. Embryo development, oocyte morphology and Kinetics of meiotic maturation in bovine oocytes exposed to 6- Dimethyalmino purine prior of in vitro maturation. Mol. Reprod. Dev, 50, 334 - 344.
[20]   Sutton-McDowall, M. L.; Gilchrist, R. B.; Thompson, J. G. 2004. Cumulus expansion and glucose utilisation by bovine cumulus-oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone. Reproduction, 128(3),313-319.
[21]   Baird, D.T.; Swanston, I.; Scaramuzzi, R.J. 1976. Pulsatile release of LH and secretion of ovarian steroids in sheep during the luteal phase of the estrus cycle. Endocr, 98: 1490-1496.
[22]   Romero-Arredondo, A.; Seidel, G. E. 1996. Effects of Follicular Fluid during in Vitro Maturation of Bovine Oocytes on in Vitro Fertilization and Early Embryonic Development1. Biology of Reproduction, 55(5), 1012–1016. doi:10.1095/biolreprod55.5.1012 
[23]   Wahid, H.; Monaghan, P.; Gordon, I. 1992. In vitro maturation (IVM) of sheep follicular oocytes. J. Reprod. Fertil, 9: 52-63.
[24]   Austin, C. R.; Short, R.V. 1982. Germ cell and fertilization. In. Reproduction In Mammals. 2nded. University press, Cambridge.
[25]   Cognie, Y.; Poulin, N.; Pignon, P.; Suion, J.; Beckers, J.F.; Guerin, Y. 1995. Does heparin affect development ability of IVF goat oocytes 11th meeting of the European Embryo Transfer Association, Hannover, Germany.
[26]   Christensen, A.; Bentley, G.; Cabrera, R.; Ortega, H.; Perfito, N.; Wu, T.; Micevych, P. 2012. Hormonal Regulation of Female Reproduction. Hormone and Metabolic Research, 44(08), 587–591. doi:10.1055/s-0032-1306301 
[27]   Fortune, J.; Hansel, W. 1979. Ovarian Follicular and Corpus Luteum Function, 203–208 (Springer, 1979). doi: 10.1007/978-1-4684-3474-3
[28]   Aly Hassan, H.; Azab, H.; Rahman, A. A.; Nafee, T. M. 2001. Effects of growth hormone on in vitro maturation of germinal vesicle of human oocytes retrieved from small antral follicles. Journal of Assisted Reproduction and Genetics, 18(8), 417–420. https://doi.org/10.1023/A:1016630603560
[29]   Nyholt de Prada, J. K.; VandeVoort, C. A. 2008. Growth hormone and in vitro maturation of rhesus macaque oocytes and subsequent embryo development. Journal of Assisted Reproduction and Genetics, 25(4), 145–158. doi:10.1007/s10815-008-9208-3
[30]   Ali, A.; Sirard, M.-A. 2002. Effect of the Absence or Presence of Various Protein Supplements on Further Development of Bovine Oocytes During In Vitro Maturation. Biology of Reproduction, 66(4), 901–905. doi:10.1095/biolreprod66.4.901 
[31]   Mtango, N.R. Varisanga, M.D. ; Suzuki, T . 2002. Effects of Growth Hormone and Growth Factors on the Improvement of Culture Conditions of In vitro Produced Bovine Embryos. Pakistan Journal of Biological Sciences, 5, 604-606. doi: 10.3923/pjbs.2002.604.606
[32]   Merriman, D. G.; Whittingham, J.; Carroll, J. 1998. The effect of follicle stimulating hormone and epidermal growth factor on the developmental capacity of in-vitro matured mouse oocytes. Human Reproduction, 13(3), 690–695. https://doi.org/10.1093/humrep/13.3.690
[33]   Dinopoulou, V.; Drakakis, P.; Kefala, S.; Kiapekou, E.; Bletsa, R.; Anagnostou, E., ….; Loutradis, D. 2016. Effect of recombinant-LH and hCG in the absence of FSH on in vitro maturation (IVM) fertilization and early embryonic development of mouse germinal vesicle (GV)-stage oocytes. Reproductive Biology, 16(2), 138–146. doi: 10.1016/j.repbio.2016.01.004 
[34]   Goud, P. T.; Goud, A. P.; Qian, C.; Laverge, H.; Van der Elst, J.; De Sutter, P.; Dhont, M. 1998. In-vitro maturation of human germinal vesicle stage oocytes: role of cumulus cells and epidermal growth factor in the culture medium. Human Reproduction, 13(6), 1638–1644. doi:10.1093/humrep/13.6.1638
[35]   Silva, D.S.; Pereira, L.P.; Navarro, R.B.; Rosa, D.C.; Pessoa, G.A.; Silva, C.A.M.; Rubin, M.I.B. 2010. In vitro production of Bos taurus indicus embryos with cysteamine. Anim. Reprod, 7(1), 29-34.
[36]   Barceló-Fimbres, M.; Seidel, G. E. 2007. Effects of fetal calf serum, phenazine ethosulfate and either glucose or fructose during in vitro culture of bovine embryos on embryonic development after cryopreservation. Molecular Reproduction and Development, 74(11), 1395–1405. doi:10.1002/mrd.20699 
[37]   Vettical, B.S. 2016. Effect of Fetal Calf Serum and Mid Estrus Cow Serum On In Vitro Maturation and Fertilization of Oocytes from Crossbred Cattle in the Tropics Int. J Appl Sci Biotechnol, Vol 4(3): 308-310 doi: 10.3126/ijasbt. v4i3.15149
[38]   Iwata, H.; Ohota, M., Hashimoto, S.; Kimura, K.; Isaji, M.; Miyake, M. 2003. Stage-Specific Effect of Growth Hormone on Developmental Competence of Bovine Embryos Produced In-Vitro. Journal of Reproduction and Development, 49(6), 493–499. doi:10.1262/jrd.49.493 
[39]   Allen, R. L.; Bondioli, K. R.; Wright, R. W. 1982. The ability of fetal calf serum, new-born calf serum and normal steer serum to promote the development of bovine morulae. Theriogenology, 18(2), 185–189. doi:10.1016/0093-691x(82)90102-9 
[40]   Wright, R.W.; Anderson, G.B.; Cupps, P.T. 1976. Blastocyst expansion and hatching of bovine ova cultured in vitro. J. Anim. Sci, 43, 170-174.
[41]   Yao, T.; Asayama, Y. 2017. Animal-cell culture media: History, characteristics, and current issues. Reproductive Medicine and Biology, 16(2), 99– 117. doi:10.1002/rmb2.12024
[42]   Cheever, M.; Master, A.; Versteegen, R. A. 2017. Method for differentiating fetal bovine serum from newborn calf serum. BioProcess J, 2017; 16. https://doi.org/10.12665/J16OA.Cheever
[43]   Groothuis, F. A.; Heringa, M. B.; Nicol, B.; Hermens, J. L. M.; Blaauboer, B. J.; Zramer, N. I. 2015. Dose metric considerations in in vitro assays to improve quanti­tative in vitro-in vivo dose extrapolations. Toxicology, 332, 30-40. doi: 10.1016/j.tox.2013.08.012
[44]   Baker, M. 2016. Is there a reproducibility crisis?. Nature, 533, 452-454. doi:10.1038/533452a
[45]   Usta, S. N.; Scharer, C. D.; Xu, J.; Frey, T.K.; Nash, R.J. 2014. Chemically defined serum-free and xeno-free media for multiple cell lineages. Ann Transl Med, 2, 97. doi: 10.3978/j.issn.2305-5839.2014.09.05
[46]   Abe, H.; Yamashita, S.; Satoh, T.; Hoshi, H. 2001. Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Molecular Reproduction and Development, 61(1), 57 66. doi:10.1002/mrd.1131 
[47]   Amstislavsky, S.; Mokrousova, V.; Brusentsev, E.; Okotrub, K.; Comizzoli, P. 2018. Influence of Cellular Lipids on Cryopreservation of Mammalian Oocytes and Preimplantation Embryos: A Review. Bio preservation and Bio banking. doi:10.1089/bio.2018.0039
[48]   Puri, G.; Chaudhary, S. S.; Singh, V. K.; Sharma, A. K. 2015. Effects of fetal bovine serum and estrus buffalo serum on maturation of buffalo (Bubalus bubalis) oocytes in vitro. Veterinary World, 8(2), 143–146. doi:10.14202/vetworld.2015.143-146 
[49]   Momozawa, K.; Fukuda, Y. 2011. Effects of Fractions of Bovine Follicular Fluid and Fetal Bovine Serum as Supplements to Maturation Medium on In Vitro Development of In Vitro Fertilized Bovine Embryos. Journal of Mammalian Ova Research, 28(1), 68–74. doi:10.1274/jmor.28.68 
[50]   Nunes Dode, M. A.; Graves C. 2001. Influence of Hormones and Follicular Fluid on Maturation of Pig Oocytes. Cienc. Rural , 31 (1), 99-104. https://doi.org/10.1590/S0103-84782001000100016
[51]   Polgar, Z.; Somfai, T.; Angeli, V.; Tang, X. H.; Ji, W.; Dinnyes, A. 2006. Effects of Fetal Calf Serum, Growth Factor, And Hormone Supplementation During In Vitro Maturation on Parthenogenetic Activation and Embryo Development of Follicular Rabbit Oocytes.  Reproduction, Fertility and Development, 19, 290-291doi:10.1071/RDv19n1Ab351
[52]   Kumar, T.S.; Farman, M.; Nandi, S.; Girish Kumar, V.; Gupta, P.S.P. ;2015. Biochemical Constituents of Ovarian Follicular Fluid in Ruminants and their Significance in Follicle and Oocyte Development. J Vet Sci Med Diagn, 4:3. doi:10.4172/2325-9590.1000159
[53]   Leroy, J. L. M.; Vanholder, T.; Delanghe, J.; Opsomer, G.; Van Soom, A.; Bols, P. E.; de Kruif, A. 2004. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Animal Reproduction Science, 80(3-4), 201–211. doi:10.1016/s0378-4320(03)00173-8 
[54]   Ginther, O. J.; Beg, M. A.; Bergfelt, D. R.; Donadeu, F. X.; Kot, K. 2001. Follicle Selection in Monovular Species. Biology of Reproduction, 65(3), 638–647. doi:10.1095/biolreprod65.3.638
[55]   Ayoub, M. A.; Hunter, A. G. 1993. Inhibitory Effect of Bovine Follicular Fluid on In Vitro Maturation of Bovine Oocytes. Journal of Dairy Science, 76(1), 95–100. doi:10.3168/jds. S0102-0302(93)77327-0
[56]   Ito, M.; Iwata, H.; Kitagawa, M.; Kon, Y.; Kuwayama, T.; Monji, Y. 2008. Effect of follicular fluid collected from various diameter follicles on the progression of nuclear maturation and developmental competence of pig oocytes. Animal Reproduction Science, 106(3-4), 421–430. doi:10.1016/j.anireprosci.2007.06.003 
[57]   Hafez, B.; Hafez, E. S. E. 2000. Reproduction in farm animals. Philadelphia: Lippincott Williams & Wilkins. https://www.worldcat.org/title/reproduction-in-farm-animals/oclc/42717094 . https://doi.org/10.1071/RDv18n2Ab99
[58]   Armstrong, D.; Webb, R. 1997. Ovarian follicular dominance: the role of intraovarian growth factors and novel proteins. Reviews of Reproduction, 2(3), 139–146. doi:10.1530/ror.0.0020139
[59]   Nandi, S.; Girish Kumar, V. 2008. Effect of a partially purified 30.1 kDa ovine follicular fluid protein on ovine follicle and ovarian somatic cell growth, and oocyte maturation in vitro. Acta Physiologica, 193(4), 341–355. doi:10.1111/j.1748-1716.2008. 01849.x 
[60]   Kor, N.; Khanghah, K.; Veisi, A. 2013. Follicular Fluid Concentrations of Biochemical Metabolites and Trace Minerals in Relation to Ovarian Follicle Size in Dairy Cows. Annual Research & Review in Biology, 3(4), 397-404. Retrieved from
[61]   Iwata, H.; Inoue, J.; Kimura, K.; Kuge, T.; Kuwayama, T.; Monji, Y. 2006. Comparison between the characteristics of follicular fluid and the developmental competence of bovine oocytes. Animal Reproduction Science, 91(3-4), 215–223. doi:10.1016/j.anireprosci.2005.04.006 
[62]   Arshad, H. M.; Ahmad Zia-ur-Rahman N.; Samad, H. A., Akhtar, N.; Ali, S. 2005.Studies on some biochemical constituents of ovarian follicular fluid and peripheral blood in buffaloes. Pakistan Vet J, 25(4): 189-193. https://core.ac.uk/download/pdf/26817991.pdf
[63]   Lopes, J. S.; Canha-Gouveia, A.; París-Oller, E.; Coy, P. 2018. Supplementation of bovine follicular fluid during in vitro maturation increases oocyte cumulus expansion, blastocyst developmental kinetics, and blastocyst cell number. Theriogenology. doi:10.1016/j.theriogenology.2018.12.010 
[64]   Asad, L.; Khandoker, M. A. M. Y.; Hoque, S. A. M.; Saha, S. 2018. Effect of Follicular Fluid on in Vitro Maturation, Fertilization and Development of Goat Embryos using Fresh Semen. International Journal of Agriculture Innovations and Research, 6(6), 2319-1473. https://ijair.org/index.php/issues?view=publication&task=show&id=1162
[65]   Kim, K.; Mitsumizo, N.; Fujita, K.; Utsumi, K. 1996. The effects of follicular fluid on in vitro maturation, oocyte fertilization and the development of bovine embryos. Theriogenology, 45(4), 787–799. doi:10.1016/0093-691x(96)00008-8
[66]   Hu, M.; Du, Z.; Zhou, Z.; Long, H.; Ni, Q. 2019. Effects of serum and follicular fluid on the in vitro maturation of canine oocytes. Theriogenology. doi: 10.1016/j.theriogenology.2019.11.040 
[67]   Gil, L.; Saura, S.; Echegaray, A.; Martinez, F.; de Blas, I.; Akourki, A.; … Josa, A. 2005. Effect of the in vitro maturation medium on equine oocytes: Comparison of follicular fluid and oestrous mare serum. Acta Veterinaria Hungarica, 53(2), 241–248. doi:10.1556/avet.53.2005.2.9
[68]   Dell’Aquila, M. E.; Cho, Y. S., Minoia, P.; Traina, V.; Lacalandra, G. M.; Maritato, F. 1997. Effects of follicular fluid supplementation of in-vitro maturation medium on the fertilization and development of equine oocytes after in- vitro fertilization or intracytoplasmic sperm injection. Human Reproduction, 12(12), 2766–2772. doi:10.1093/humrep/12.12.2766 
[69]   Gasparrini, B.; Boccia, L.; Marchandise, J.; Di Palo, R.; George, F.; Donnay, I.; Zicarelli, L. 2006. Enrichment of in vitro maturation medium for buffalo (Bubalus bubalis) oocytes with thiol compounds: Effects of cystine on glutathione synthesis and embryo development. Theriogenology, 65(2), 275–287. doi: 10.1016/j.theriogenology.2005.05.036
[70]   Balasubramanian, S.; Rho, G.-J. 2007. Effect of cysteamine supplementation of in vitro matured bovine oocytes on chilling sensitivity and development of embryos. Animal Reproduction Science, 98(3-4), 282–292. doi: 10.1016/j.anireprosci.2006.03.011 
[71]   Kelly J.; Kleemann D.; Kuwayama M.; Walker, S. 2005. Effect of cysteamine on survival of bovine and ovine oocytes vitrified using the minimum volume cooling (mvc) cryotop method. Reproduction, Fertility and Development, 18, 158-158.
[72]   De Matos, D. G.; Herrera, C.; Cortvrindt, R.; Smitz, J.; Van Soom, A.; Nogueira, D.; Pasqualini, R. S. 2002. Cysteamine supplementation during in vitro maturation and embryo culture: A useful tool for increasing the efficiency of bovine in vitro embryo production. Molecular Reproduction and Development, 62(2), 203–209. doi:10.1002/mrd.10087 
[73]   Merton, J. S.; Knijn, H. M.; Flapper, H.; Dotinga, F.; Roelen, B. A. J.; Vos, P. L. A. M.; Mullaart, E. 2013. Cysteamine supplementation during in vitro maturation of slaughterhouse- and opu-derived bovine oocytes improves embryonic development without affecting cryotolerance, pregnancy rate, and calf characteristics. Theriogenology, 80(4), 365–371. doi: 10.1016/j.theriogenology.2013.04.025 
[74]   Ranjbar, A.; Eslampour, M.A.; Moghadam, M.F. 2019. Effect of cysteamine and 13-cis-retinoic acid on bovine in vitro embryo production. Kafkas Univ Vet Fak Derg, 25 (2), 231-237. doi: 10.9775/kvfd.2018.20778
[75]   Guemra, S.; Monzani, P.S.; Santos, E.S.; Zanin, R.; Ohashi, O.M.; Miranda, M.S.; Adona, P.R. 2013. Maturação in vitro de oócitos bovinos em meios suplementados com quercetina e seu efeito sobre o desenvolvimento embrionário. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 65(6), 1616-1624. doi:10.1590/S0102-09352013000600005
[76]   Mahmoud, K. Gh M.; El-Sokary, M. M.M.; Kandiel, M. M.M.; Abou El-Roos, M. E.A.; Sosa, G. M.S. 2016. Effects of cysteamine during in vitro maturation on viability and meiotic competence of vitrified buffalo oocytes. Iranian Journal of Veterinary Research, 17(3):165-170.
[77]   Zhou, P.; Wu, Y.-G.; Li, Q.; Lan, G.-C.; Wang, G.; Gao, D.; Tan, J.-H. 2008. The interactions between cysteamine, cystine and cumulus cells increase the intracellular glutathione level and developmental capacity of goat cumulus-denuded oocytes. Reproduction, 135(5), 605–611. doi:10.1530/rep-08-0003
[78]   Beheshti, R.; Mohammadi-Roshandeh, A.; Giasi Ghalehkandi, J.; Ghaemmaghami, S.; Houshangi, A.F. 2011. Effect of Antioxidant Supplements on in Vitro Maturation of Bovine Oocyte. Advances in Environmental Biology, 5(7), 1473-1475
[79]   Cocero, M.; Alabart, J.; Hammami, S.; Martí, J.; Lahoz, B., …;  Folch, J. 2010. The Efficiency of In vitro Ovine Embryo Production Using an Undefined or a Defined Maturation Medium is Determined by the Source of the Oocyte. Reproduction in Domestic Animals, 46(3), 463–470. doi:10.1111/j.1439-0531.2010. 01690.x 
[80]   Shabankareh, H. K.; Zandi, M. 2010. Developmental potential of sheep oocytes cultured in different maturation media: effects of epidermal growth factor, insulin-like growth factor I, and cysteamine. Fertility and Sterility, 94(1), 335–340. doi: 10.1016/j.fertnstert.2009.01.160