Document Type : Research Paper

Authors

1 Agricultural Water Management Laboratory, National High School of Agronomy (ENSA), Algiers, Algeria

2 Laboratory of Applied Geology, Department of Soil Science, Superior National School of Agronomics (ENSA), Algiers, Algeria

3 Institut National de la Recherche Agronomique

Abstract

The study carried out in the eastern Mitidja (Algeria) using groundwater chemistry data is aimed at clarifying the geochemical behavior of the alluvial groundwater as well as assessing the degree of nitrate contamination. The aquifer is characterized by a heterogeneous lithology marked by alternating levels of alluvium, gravel, sand and clay. The chemical facies encountered are: Na - Cl type with 52.7%, Mixed Ca - Mg - Cl type with 29.1%, Mixed Ca - Na - HCO3 type with 9.1% and Ca – HCO3 type with 9.1%. The interpretation of the analytical data shows that water mineralization is controlled by many ions Na+, SO42-, Cl-, Ca2+ and HCO3-. The Gibbs diagram suggests that weathering rock is the determining factor in the current chemical composition of groundwater. Agricultural activity is the main source of groundwater contamination by nitrates. Most of the water points tested have NO3 values very close to the critical threshold of 50 mg/l, the world health organization (WHO) drinking water reference value. By comparing this with the "human affected value" of 13 mg/l, 95% of the analyzed waters are considered contaminated. This water degradation is linked to the widespread use of nitrogen fertilizers, agricultural practices and increasing urbanization.

Keywords

Main Subjects

[1] Semar, A., Hartani, T., & Bachir, H. (2019). Soil and water salinity evaluation in new agriculture land under arid climate, the case of the Hassi Miloud area, Algeria. Euro-Mediterranean Journal for Environmental Integration4(1), 1-14.
[2] Semar, A., Bachir, H., & Bourafai, S. (2021). Hydrochemical characteristics of aquifers and their predicted impact on soil properties in Biskra region, Algeria. Egyptian Journal of Agricultural Research99, (2), 205-220.
[3] Brahim, F. B., Boughariou, E., & Bouri, S. (2021). Multicriteria-analysis of deep groundwater quality using WQI and fuzzy logic tool in GIS: A case study of Kebilli region, SW Tunisia. Journal of African Earth Sciences, 180, 104224.
[3] Moya, C. E., Raiber, M., Taulis, M., Taulis, M., and Cox, M.E. (2015). Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: ¶A multivariate statistical approach. Total environnement science. Volume 508, 411-426.
[4] Villegas, P., Paredes, V., Betancur T. and Ribeiro L. (2013). Assessing the hydrochemistry of the Urabá Aquifer, Colombia by principal component analysis. Journal of Geochemical Exploration, 134, 120-129.
[5] Ravikumar P., R. K. Somashekar R. K., and Mhasizonuo A. (2011). Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking in the the Markandeya river basin, Belgaum District, Karnataka State, India. ¶Environmental Monitorig and assessment, Volume 173, 1, 459-487.
[6] Prasanna, M.V., Chidambaram, S., Senthil, Kumar, G., Ramanathan, A.L. and Nainwal, H.C. (2010). Hydrogeochemical Assessment of Groundwater in Neyveli Basin, Cuddalore District, South India. Arabian Journal of Geosciences. 4, 1-2, 319-330.
[7] Psychoyou, M., Mimides, T., Rizos, S., and Sgoubopoulou, A. (2007). Groundwater hydrochemistry at Balkan coastal plains, the case of Marathon of Attica, Greece. Dessalement, 213, 230-237.
[8] Subyani, A.M. (2005). Hydrochemical identification and salinity problem of ground water in Wadi Yalamlam basin, Western Saudi Arabia. Journal of Arid Environments 60. 53-66.
[9] Wick, K., Heumesser, C., and Schmid, E. (2012). Groundwater nitrate contamination: factors and indicators. Journal of environmental management, 111, 178-186.
[10] Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W., and Bemment, C. D. (2008). Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water research, 42, 16, 4215-4232.
[11] Mahvi, A. H., Nouri, J., Babaei, A. A., & Nabizadeh, R. (2005). Agricultural activities impact on groundwater nitrate pollution. International Journal of Environmental Science & Technology, 2, 1, 41-47.
[12] Maynard, D. N., Barker, A. V., Minotti, P. L., & Peck, N. H. (1976). Nitrate accumulation in vegetables. Advances in Agronomy28, 71-118.
[13] Meddi, M., Boufekane, A., & Meddi, H. (2015). Recharge artificielle de la nappe de la Mitidja. Éditions universitaires européennes.
[14] Trigo, R., Xoplaki, E., Zorita, E., Luterbacher, J., Krichak, S. Alpert, P., Jacobeit, J., Sáenz, J., Fernández, J, González-Rouco, F., Garcia-Herrera, R.,  Rodo, X., Brunetti, M., Nanni, T., Maugeri, M., Türke, M., Gimeno, L.,  Ribera, P., Brunet, M., Trigo, I., Crepon, M., Mariotti, A. (2006). Relations between variability in the Mediterranean region and mid-latitude variability.Developments in Earth and Environmental Sciences, 4,179-226.
[15] Hartani, T., Imache, A., Kuper, M., & Bouarfa, S. (2011). La Mitidja vingt ans après : Réalités agricoles aux portes d’Alger. Editions Quae, p 290.
[16] Lagoun, A.M., Bouzid-Lagha, S., Bendjaballah-Lalaoui N., Saibi, H., (2021). Geographic information system–based approach and statistical modeling for assessing nitrate distribution in the Mitidja aquifer, Northern Algeria. Environmental Monitoring and Assessment, 10, P 193(10).
[17] Zamiche S, Hamaidi-Chergui F, Demiai A.Pollution of the quaternary aquifer of mitidja (Algeria) by nitrates: origins and impacts on the quality of water for human consumption. J. Fundam. Appl. Sci., 2018, 10(1), 113-131
[18] Saida, S, Tarik H, Abdellah A, Farid H, Hakim B. (2017). Assessment of Groundwater Vulnerability to Nitrate Based on the Optimised DRASTIC Models in the GIS Environment (Case of Sidi Rached Basin, Algeria). Geosciences.  7(2): 20.
[19] Mimouni, O., Cheikh Lounis, G., Kabouche, S., & Menceur, H. (2015). Vulnerability to pollution of mitidja palin alluvial aquifer (Algiers-Algeria). Int. J. Enhanced Res. Sci. Technol. Engineering, 137-143.
[20] Khous, D., Ait-amar, H., Belaidi, M. and Chorfi H. (2019). Geochemical and isotopic assessment of the groundwater quality in the alluvial aquifer of the Eastern Mitidja plain.¶ Water ressources. ¶46,¶443.
[21] Glangeaud, L., Aymé, A., Caire, A., Mattauer, M., & Muraour, P. (1952). Geological history of the province of Algiers. XIX cong. Geol. Inter. Monogr. Algeria Region, 1st series, (25).
[22] Meghraoui M. (1991). System of blind reversed faults associated with the Chenoua Mont Tipasa earthquake of October 29, 1989 (Center-North Algeria).¶Terra Nova, 3, 84-93.
[23] Boudiaf, A. (1996). Etude sismotectonique de la région d'Alger et de la Kabylie (Algérie): utilisation des modèles numériques de terrains (MNT) et de la télédétection pour la reconnaissance des structures tectoniques actives: contribution à l'évaluation de l'aléa sismique (Doctoral dissertation, Montpellier 2).
[24] Sekkal, R. (1986). Hydrologie de la nappe de la Mitidja (Algérie): étude hydrodynamique des champs captants de la ville d'Alger (Doctoral dissertation, Université Scientifique et Médicale de Grenoble).
[25] Queney P. (1937). Le régime pluviométrique de l’Algérie et son évolutiondepuis 1850. Météorologie 427-440
[26] Queney, P. (1943) .Les fronts atmosphériques permanents et leurs pertur-bations. (Travaux de l’Institut de Météorologie, fasc. 3. Alger. 1-6
[27] Rodier J., 2009. Analysis of water, 9th edition. Dunod, Paris, 1526.
[28] Domenico, P. A., and Schwartz, F. W. (1998). Physical and chemical hydrogeology (Vol. 506). New York: Wiley.
[29] Simler, R. (2007) Diagrammes. Laboratoire d’hydrogéologie. Université d’Avignon, Logiciel d’hydrochimie multilangage
en distribution libre. France
[30] Appelo, C.A.J. and Postma, D. (1999). Chemical analysis of groundwater, Geochemistry, groundwater and pollution. Rotterdam, Balkema.
[31] Drever, J.I. (1997) The geochemistry of natural waters. ¶Prentice-Hall, Englewood Cliffs, 436.
[32] Schoeller, (1965). Qualitative Evaluation of Groundwater Resources. In Methods and Techniques of Groundwater Investigations and Developments. UNESCO
[33] Gibbs, R. J. (1970). Mechanisms Controlling World's Water Chemistry. Science, 170, 3962, 1088- 1090.
[34] Burkart, M.R, Kolpin, D.W. (1993). Hydrologic and land use factors associated with herbicides and nitrates in near-surface aquifers. Journal of Environmental Quality, 22, 646-656.
[35] Majumder, R.K., Hasnat, M.A., Hossain, S., Ikeue, K., and Machida, M. (2008). An exploration of nitrate concentrations in groundwater aquifers of central-west region of Bangladesh. Journal of Hazardous Materials, 159, 536-543
[36] Raju, N. J., Patel, P., Gurung, D., Ram, P., Gossel, W., & Wycisk, P. (2015). Geochemical assessment of groundwater quality in the Dun valley of central Nepal using chemometric method and geochemical modeling. Groundwater for Sustainable Development, 1(1-2), 135-145.
[37] Sarin, M. M. Krishnaswamy S., Dilli. K., Somayajulu. B.L.K and Moore, W.S. (1989). Major ion chemistry of the Ganga-Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochim. Cosmochim. Acta53, 997-1009.
[38] Kundu, M.C. and Mandal, B. (2009). Agricultural Activities Influence Nitrate and Fluoride Contamination in Drinking Groundwater of an Intensively Cultivated District in India. Water, Air, and Soil Pollution, 198, 1-4, 243-252.
[39] Evans, A. E., Mateo-Sagasta, J., Qadir, M., Boelee, E., & Ippolito, A. (2019). Agricultural water pollution: key knowledge gaps and research needs. Current opinion in environmental sustainability, 36, 20-27.
[40] He, S., & Wu, J. (2019). Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of Huanhe Formation in Wuqi county, northwest China. Exposure and Health, 11(2), 125-137.
[41] Liu, F., Song, X., Yang, L., Zhang, Y., Han, D., Ma, Y., and Bu, H. (2015), Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin,Ordos energy base, Northwestern China. Hydrology and Earth ¶System ¶Science,¶19, 551-565.
[42] Talib, M.A., Tang, Z., Shahab, A., Siddique, J., Faheem, M. and Fatima, M. (2019). Hydrogeochemical Characterization and Suitability Assessment of Groundwater: A Case Study in Central Sindh, Pakistan.  International journal of environmental research and public health, 16 (5), 886.
[43] Zhang, Y., Li, F., Zhang, Q., Li, J., & Liu, Q. (2014). Tracing Nitrate Pollution Sources and Transformation in Surfaceand Ground-Waters Using Environmental Isotopes Science of the Total Environment, 490, 213-222.
[44] Wakida, F.N. and Lerner, D.N., 2005. Non-agricultural sources of groundwater nitrate: a review and case study. Water research, 39, 1, 3-16.
[45] Rodriguez-Galiano, V. F., Luque-Espinar, J. A., Chica-Olmo, M., & Mendes, M. P. (2018). Feature selection approaches for predictive modelling of groundwater nitrate pollution: An evaluation of flters, embedded and wrapper methods. Science of the total environment, 624, 661-672.