Document Type : Review Paper


1 Department of Food Science, College of Agriculture, University of Basrah, Iraq.

2 Department of Food Science, College of Agriculture, University of Basrah, Iraq


The relationship between meat consumption and health is complex and should be analyzed in detail, paying particular attention to the relevant differences that characterize the effects of different types of meat, and in several studies on poultry meat, including turkey, which is characterized by its highly digestible proteins (with low levels of collagen), and of good nutritional quality as well as unsaturated fats (found mainly in the skin and easily removed) and vitamins of group B (mainly thiamine, vitamin B6, and pantothenic acid), Minerals (such as iron, zinc, and copper) make its meat a valuable food. Through this study, it was found that there is a relationship between the consumption of turkey meat within a balanced diet and good health. Consuming it as part of a diet rich in vegetables is associated with a reduced risk of weight gain, obesity, cardiovascular disease, and type 2 diabetes. White meat (and poultry in particular) is considered moderately protective or neutral against cancer risk. The importance of poultry meat to humans has also been recognized by the Food and Agriculture Organization of the United Nations (FAO), which considers this widely available and relatively inexpensive food to be particularly beneficial in developing countries, as it can help fill in the deficiency of essential nutrients. Consumption of Turkey also contributes to the overall quality of the diet at specific ages and conditions (before conception, during pregnancy until the end of breastfeeding, during growth, and into old age) and is suitable for those with an increased need for calories and protein compared to the general population. And it was found that turkey meat contains some vital amines, which are an indicator of quality, as well as having antioxidant and antibacterial activity, and it has been proven that eating this type of meat reduces the incidence of COVID-19 disease.


Main Subjects

[1]     Warriss, P.D. (2000). Meat Science: An introductory text. Oxfordshire: CABI. 310 P.
[2]     Al –Baidhani, A. M. S.  M. (2019). Characterization Meat and Fat of Ostrich and Evaluate the Quality Properties of its Processed Burger During Frozen Storage. A thesis, Department of Food Science, College of Agriculture, University of Basrah, Iraq.162p.
[3]     Al-Baidhani, A. M., & Al-Mossawi, A. H. (2019). The study of chemical content and physicochemical properties of ostrich (Struthio camelus) fat (local). In IOP Conference Series: Earth and Environmental Science (Vol. 388, No. 1, p. 012055). IOP Publishing. DOI:10.1088/1755-1315/388/1/012055.
[4]     FAOSTAT (2018). On-line and multilingual database currently covering international statistics [Online]. Available: [18 July 2018].
[5]     Gálvez, F., Domínguez, R., Maggiolino, A., Pateiro, M., Carballo, J., De Palo, P., Barba, F.J. & Lorenzo, J. M. (2020). Meat quality of commercial chickens reared in different production systems: industrial, range and organic. Annals of Animal Science, 20(1), 263-285.
[6]     Kamboh, A. A., & Zhu, W. Y. (2013). Effect of increasing levels of bioflavonoids in broiler feed on plasma anti-oxidative potential, lipid metabolites, and fatty acid composition of meat. Poultry Science, 92(2), 454-461. ‏
[7]     Jayasena, D. D., Jung, S., Kim, H. J., Bae, Y. S., Yong, H. I., Lee, J. H., Kim, J.G. & Jo, C. (2013). Comparison of quality traits of meat from Korean native chickens and broilers used in two different traditional Korean cuisines. Asian-Australasian Journal of Animal Sciences, 26(7), 1038.
[8]     Jung, Y. K., Jeon, H. J., Jung, S., Choe, J. H., Lee, J. H., Heo, K. N., Kang, S. & Jo, C. R. (2011). Comparison of quality traits of thigh meat from Korean native chickens and broilers. Food Science of Animal Resources, 31(5), 684-692.
[9]     Zhao, G. P., Cui, H. X., Liu, R. R., Zheng, M. Q., Chen, J. L., & Wen, J. (2011). Comparison of breast muscle meat quality in 2 broiler breeds. Poultry Science, 90(10), 2355-2359.
[10]  Chen, Y., Qiao, Y., Xiao, Y., Chen, H., Zhao, L., Huang, M., & Zhou, G. (2016). Differences in physicochemical and nutritional properties of breast and thigh meat from crossbred chickens, commercial broilers, and spent hens. Asian-Australasian journal of animal sciences, 29(6), 855.
[11]  ‏ Marangoni, F., Corsello, G., Cricelli, C., Ferrara, N., Ghiselli, A., Lucchin, L., & Poli, A. (2017). Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food & nutrition research, 59(1), 27606.
[12]  Gnagnarella, P., Salvini, S., & Parpinel, M. (2008). Food composition database for epidemiological studies in Italy. European Institute of Oncology 2008. ‏Available at: [cited 1Dec 2008].
[13]  Lofgren, P.A. (2005). Meat, poultry and meat products. In: Caballero B, Allen L, Prentice A, eds. Encyclopedia of human nutrition. 2nd ed. Elsevier: Academic Press; 2005, pp. 230-7.
[14]  FAO/WHO/U´ NU Expert Consultation (1985). Endogenous recoveries of true ileal digestibilities of amino acids in newly weaned piglets fed diets with protease-treated soybean meal. Energy and protein requirements. Technical Report Series 724. Geneva: World Health Organization.
[15]  Levine, M. E., Suarez, J. A., Brandhorst, S., Balasubramanian, P., Cheng, C. W., Madia, F., Luigi Fontana, Mirisola, L. M. G., Guevara-Aguirre, J., Junxiang Wan, J., Passarino, G., Kennedy, B. K., Wei, M., Cohen, P., Eileen M. Crimmins, E.M. & Longo, V. D. (2014). Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell metabolism, 19(3), 407-417.
[16]  Hibbeln, J. R., Nieminen, L. R., Blasbalg, T. L., Riggs, J. A., & Lands, W. E. (2006). Healthy intakes of n− 3 and n–6 fatty acids: estimations considering worldwide diversity. The American journal of clinical nutrition, 83(6), 1483S-1493S.‏
[17]  Givens, D. I., & Gibbs, R. A. (2008). Current intakes of EPA and DHA in European populations and the potential of animal-derived foods to increase them: Symposium on ‘How can the n-3 content of the diet be improved?’. Proceedings of the Nutrition Society, 67(3), 273-280.
[18]  Lombardi‐Boccia, G., Martinez‐Dominguez, B., & Aguzzi, A. (2002). Total heme and non‐heme iron in raw and cooked meats. Journal of Food Science, 67(5), 1738-1741.
[19]  Daniel, C. R., Cross, A. J., Koebnick, C., & Sinha, R. (2011). Trends in meat consumption in the USA. Public health nutrition, 14(4), 575-583.
[20]  Leclercq, C., Arcella, D., Piccinelli, R., Sette, S., & Le Donne, C. (2009). The Italian National Food Consumption Survey INRAN-SCAI 2005–06: main results in terms of food consumption. Public health nutrition, 12(12), 2504-2532. ‏
[21]  Clifton, P. M. (2011). Protein and coronary heart disease: the role of different protein sources. Current atherosclerosis reports, 13(6), 493-498.
[22]  Halton, T. L., & Hu, F. B. (2004). The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. Journal of the American college of nutrition, 23(5), 373-385.‏
[23]  Te Morenga, L., & Mann, J. (2012). The role of high-protein diets in body weight management and health. British Journal of Nutrition, 108(S2), S130-S138.‏
[24]  Paoli, A. (2014). Ketogenic diet for obesity: friend or foe?. International journal of environmental research and public health, 11(2), 2092-2107.‏
[25]  Westerterp-Plantenga, M. S., Nieuwenhuizen, A., Tome, D., Soenen, S., & Westerterp, K. R. (2009). Dietary protein, weight loss, and weight maintenance. Annual review of nutrition, 29, 21-41.‏
[26]  Promintzer, M., & Krebs, M. (2006). Effects of dietary protein on glucose homeostasis. Current Opinion in Clinical Nutrition & Metabolic Care, 9(4), 463-468.‏
[27]  Vergnaud, A. C., Norat, T., Romaguera, D., Mouw, T., May, A. M., Travier, N., & Peeters, P. H. (2010). Meat consumption and prospective weight change in participants of the EPIC-PANACEA study. The American journal of clinical nutrition, 92(2), 398-407.‏
[28]  Hu, F. B. (2005). Protein, body weight, and cardiovascular health–. The American journal of clinical nutrition, 82(1), 242S-247S.‏
[29]  Hu, F. B., Stampfer, M. J., Manson, J. E., Ascherio, A., Colditz, G. A., Speizer, F. E., Hennekens, G. H. & Willett, W. C. (1999). Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. The American journal of clinical nutrition, 70(6), 1001-1008.‏
[30]  Feskens, E. J., Sluik, D., & van Woudenbergh, G. J. (2013). Meat consumption, diabetes, and its complications. Current diabetes reports, 13(2), 298-306.
[31]  Ley, S. H., Sun, Q., Willett, W. C., Eliassen, A. H., Wu, K., Pan, A., Grodstein, F. & Hu, F. B. (2014). Associations between red meat intake and biomarkers of inflammation and glucose metabolism in women. The American journal of clinical nutrition, 99(2), 352-360.‏
[32]  Zimmet, P., Alberti, K. G. M. M., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414(6865), 782-787.
[33]  Pan, A., Sun, Q., Bernstein, A. M., Schulze, M. B., Manson, J. E., Willett, W. C., & Hu, F. B. (2011). Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. The American journal of clinical nutrition, 94(4), 1088-1096.
[34]  ‏Aune, D., Ursin, G., & Veierød, M. B. (2009). Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia, 52(11), 2277-2287.
[35]  ‏Van Dam, R. M., Willett, W. C., Rimm, E. B., Stampfer, M. J., & Hu, F. B. (2002). Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes care, 25(3), 417-424.
[36]  ‏ Micha, R., Michas, G., & Mozaffarian, D. (2012). Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes–an updated review of the evidence. Current atherosclerosis reports, 14(6), 515-524.
[37]  Micha, R., Wallace, S. K., & Mozaffarian, D. (2010). Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation, 121(21), 2271-2283. ‏
[38]  Van Nielen, M., Feskens, E. J., Mensink, M., Sluijs, I., Molina, E., Amiano, P., & Wareham, N. J. (2014). Dietary protein intake and incidence of type 2 diabetes in Europe: the EPIC-InterAct Case-Cohort Study. Diabetes Care, 37(7), 1854-1862.
[39]  Esposito, K., Kastorini, C. M., Panagiotakos, D. B., & Giugliano, D. (2010). Prevention of type 2 diabetes by dietary patterns: a systematic review of prospective studies and meta-analysis. Metabolic syndrome and related disorders, 8(6), 471-476.
[40]  Sluik, D., Boeing, H., Li, K., Kaaks, R., Johnsen, N. F., Tjønneland, A., & Nöthlings, U. (2014). Lifestyle factors and mortality risk in individuals with diabetes mellitus: are the associations different from those in individuals without diabetes? Diabetologia, 57(1), 63-72.
[41]  ‏ Kim, Y., Keogh, J., & Clifton, P. (2015). A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes mellitus. Metabolism, 64(7), 768-779.
[42]  ‏Birlouez-Aragon, I., Saavedra, G., Tessier, F. J., Galinier, A., Ait-Ameur, L., Lacoste, F., Alt, N., Somoza, V. & Lecerf, J. M. (2010). A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. The American journal of clinical nutrition, 91(5), 1220-1226.
[43]  White, D. L., & Collinson, A. (2013). Red meat, dietary heme iron, and risk of type 2 diabetes: the involvement of advanced lipoxidation endproducts. Advances in Nutrition, 4(4), 403-411.
[44]  Kushi, L. H., Doyle, C., McCullough, M., Rock, C. L., Demark-Wahnefried, W., Bandera, E. V. & Gansler, T. (2012). American Cancer Society 2010 Nutrition and Physical Activity Guidelines Advisory Committee. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin, 62(1), 30-67.‏
[45]  Turesky, R. J. (2007). Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats. Toxicology letters, 168(3), 219-227.
[46]  ‏Bingham, S. A. (1999). High-meat diets and cancer risk. Proceedings of the Nutrition Society, 58(2), 243-248.‏
[47]  Salehi, M., Moradi-Lakeh, M., Salehi, M. H., Nojomi, M., & Kolahdooz, F. (2013). Meat, fish, and esophageal cancer risk: a systematic review and dose-response meta-analysis. Nutrition reviews, 71(5), 257-267.
[48]  Genkinger, J. M., Hunter, D. J., Spiegelman, D., Anderson, K. E., Beeson, W. L., Buring, J. E. & Smith-Warner, S. A. (2006). A pooled analysis of 12 cohort studies of dietary fat, cholesterol and egg intake and ovarian cancer. Cancer Causes & Control, 17(3), 273-285.
[49]  Bastide, N. M., Pierre, F. H., & Corpet, D. E. (2011). Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer prevention research, 4(2), 177-184. ‏
[50]  Xu, J., Yang, X. X., Wu, Y. G., Li, X. Y., & Bai, B. (2014). Meat consumption and risk of oral cavity and oropharynx cancer: a meta-analysis of observational studies. PLoS One, 9(4), e95048.
[51]  Bosetti, C., La Vecchia, C., Talamini, R., Simonato, L., Zambon, P., Negri, E. & Franceschi, S. (2000). Food groups and risk of squamous cell esophageal cancer in northern Italy. International Journal of Cancer, 87(2), 289-294.
[52]  Zhu, H. C., Yang, X., Xu, L. P., Zhao, L. J., Tao, G. Z., Zhang, C., ... & Sun, X. C. (2014). Meat consumption is associated with esophageal cancer risk in a meat-and cancer-histological-type dependent manner. Digestive diseases and sciences, 59(3), 664-673. ‏
[53]  Flood, A., Rastogi, T., Wirfält, E., Mitrou, P. N., Reedy, J., Subar, A. F., Kipnis, V., Mouw, T. Hollenbeck, A. R., Leitzmann, M. & Schatzkin, A. (2008). Dietary patterns as identified by factor analysis and colorectal cancer among middle-aged Americans. The American journal of clinical nutrition, 88(1), 176-184.‏
[54]  Dias-Neto, M., Pintalhao, M., Ferreira, M., & Lunet, N. (2010). Salt intake and risk of gastric intestinal metaplasia: systematic review and meta-analysis. Nutrition and cancer, 62(2), 133-147.
[55]  Ji, B. T., Chow, W. H., Yang, G., Mclaughlin, J. K., Zheng, W., Shu, X. O. & F. Fraumeni Jr, J. (1998). Dietary habits and stomach cancer in Shanghai, China. International journal of cancer, 76(5), 659-664.‏
[56]  Van Meer, S., Leufkens, A. M., Bueno-de-Mesquita, H. B., van Duijnhoven, F. J., van Oijen, M. G., & Siersema, P. D. (2013). Role of dietary factors in survival and mortality in colorectal cancer: a systematic review. Nutrition reviews, 71(9), 631-641. ‏
[57]  McCullough, M. L., Gapstur, S. M., Shah, R., Jacobs, E. J., & Campbell, P. T. (2013). Association between red and processed meat intake and mortality among colorectal cancer survivors. Journal of Clinical Oncology, 31(22), 2773.
[58]  Xu, B., Sun, J., Sun, Y., Huang, L., Tang, Y., & Yuan, Y. (2013). No evidence of decreased risk of colorectal adenomas with white meat, poultry, and fish intake: a meta-analysis of observational studies. Annals of epidemiology, 23(4), 215-222.
[59]  ‏Männistö, S., Dixon, L. B., Balder, H. F., Virtanen, M. J., Krogh, V., Khani, B. R. & Goldbohm, R. A. (2005). Dietary patterns and breast cancer risk: results from three cohort studies in the DIETSCAN project. Cancer Causes & Control, 16(6), 725-733.‏
[60]  Zhang, C. X., Ho, S. C., Chen, Y. M., Lin, F. Y., Fu, J. H., & Cheng, S. Z. (2009). Meat and egg consumption and risk of breast cancer among Chinese women. Cancer Causes & Control, 20(10), 1845-1853.‏
[61]  Farvid, M. S., Cho, E., Chen, W. Y., Eliassen, A. H., & Willett, W. C. (2014). Dietary protein sources in early adulthood and breast cancer incidence: prospective cohort study. Bmj, 348.‏
[62]  Kolahdooz, F., van der Pols, J. C., Bain, C. J., Marks, G. C., Hughes, M. C., Whiteman, D. C. & Australian Cancer Study (Ovarian Cancer) and the Australian Ovarian Cancer Study Group. (2010). Meat, fish, and ovarian cancer risk: results from 2 Australian case-control studies, a systematic review, and meta-analysis. The American journal of clinical nutrition, 91(6), 1752-1763.
[63]  Wallin, A., Orsini, N., & Wolk, A. (2011). Red and processed meat consumption and risk of ovarian cancer: a dose-response meta-analysis of prospective studies. British journal of cancer, 104(7), 1196-1201.
[64]  Schulz, M., Nöthlings, U., Allen, N., Onland-Moret, N. C., Agnoli, C., Engeset, D. & Riboli, E. (2007). No association of consumption of animal foods with risk of ovarian cancer. Cancer Epidemiology and Prevention Biomarkers, 16(4), 852-855.‏
[65]  Gilsing, A. M., Weijenberg, M. P., Goldbohm, R. A., van den Brandt, P. A., & Schouten, L. J. (2011). Consumption of dietary fat and meat and risk of ovarian cancer in the Netherlands Cohort Study. The American journal of clinical nutrition, 93(1), 118-126.‏
[66]  Bandera, E. V., Kushi, L. H., Moore, D. F., Gifkins, D. M., & McCullough, M. L. (2007). Consumption of animal foods and endometrial cancer risk: a systematic literature review and meta-analysis. Cancer Causes & Control, 18(9), 967-988. ‏
[67]  Saberi Hosnijeh, F., Peeters, P., Romieu, I., Kelly, R., Riboli, E., Olsen, A. & Vermeulen, R. (2014). Dietary intakes and risk of lymphoid and myeloid leukemia in the European Prospective Investigation into Cancer and Nutrition (EPIC). Nutrition and cancer, 66(1), 14-28.‏
[68]  Fedirko, V., Trichopolou, A., Bamia, C., Duarte-Salles, T., Trepo, E., Aleksandrova, K. & Jenab, M. (2013). Consumption of fish and meats and risk of hepatocellular carcinoma: the European Prospective Investigation into Cancer and Nutrition (EPIC). Annals of oncology, 24(8), 2166-2173. ‏
[69]  Ravindran, V. (2013). Poultry feed availability and nutrition in developing countries. Poultry development review, 2, 60-63.‏
[70]  Abete, I., Romaguera, D., Vieira, A. R., de Munain, A. L., & Norat, T. (2014). Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies. British Journal of Nutrition, 112(5), 762-775.
[71]  Sinha, R., Cross, A. J., Graubard, B. I., Leitzmann, M. F., & Schatzkin, A. (2009). Meat intake and mortality: a prospective study of over half a million people. Archives of internal medicine, 169(6), 562-571.‏
[72]  WHO (2002). Complementary feeding. Report of the global consultation convened jointly by the Department of Child and Adolescent Health and Development and the Department of Nutrition for Health and Development and Summary of guiding principles for complementary feeding of the breastfed child. World Health Organization, Geneva, 10_13 December 2001.‏ [73]
[73]  Gidding, S. S., Dennison, B. A., Birch, L. L., Daniels, S. R., Gilman, M. W., Lichtenstein, A. H. & Van Horn, L. (2005). Dietary recommendations for children and adolescents: a guide for practitioners: consensus statement from the American Heart Association. Circulation, 112(13), 2061-2075.‏
[74]  Fiocchi, A., Assa'ad, A., & Bahna, S. (2006). Adverse reactions to foods committee, American College of Allergy, Asthma and Immunology. Food allergy and the introduction of solid foods to infants: a consensus document. Adverse reactions to foods committee, American College of Allergy, Asthma and Immunology. Ann Allergy Asthma Immunol, 97(1), 10-20.‏
[75]  Elmadfa, I., & Weichselbaum, E. (Eds.). (2005). European nutrition and health report 2004.‏
[76]  Phillips, S. M. (2012). Nutrient-rich meat proteins in offsetting age-related muscle loss. Meat science, 92(3), 174-178.
[77]  Mihretie, Y. (2018). Review on factors affecting the shelf life of fresh meat. J Nutr Health Food Eng, 8(6), 504-508.‏
[78]  Barbut, S. (1998). Estimating the magnitude of the PSE problem in poultry. Journal of Muscle Foods, 9(1), 35-49. ‏
[79]  Amirkhanov, K., Igenbayev, A., Nurgazezova, A., Okuskhanova, E., Kassymov, S., Muslimova, N., & Yessimbekov, Z. (2017). Research article comparative analysis of red and white Turkey meat quality. Pakistan Journal of Nutrition, 16, 412-416.
[80]  Jukna, V., Klementavičiūtė, J., Meškinytė-Kaušilienė, E., Pečiulaitienė, N., Samborskytė, M., & Ambrasūnas, L. (2012). Comparative evaluation of quality and composition of ostrich, turkey and broiler meat. Biotechnology in Animal Husbandry, 28(2), 385-392.‏
[81]  [81] Kambarova, A., Nurgazezova, A., Nurymkhan, G., Atambayeva, Z., Smolnikova, F., Rebezov, М., Issayeva, K., Kazhibaeva, G., Asirzhanova, Z. & Moldabaeva, Z. (2021). Improvement of quality characteristics of turkey pâté through optimization of a protein rich ingredient: physicochemical analysis and sensory evaluation. Food Science and Technology, 41, 203-209. ‏
[82]  Sdkhan, A. M. & Jaber, A. H.  (2015). Effect of temperature and pH in some biogenic amines in some beef meat. iraq journal of market research and consumer protection, 7(2). DOI:10.13140/RG.2.2.18215.60328
[83]  Ladero, V., Calles-Enríquez, M., Fernández, M., & A Alvarez, M. (2010). Toxicological effects of dietary biogenic amines. Current Nutrition & Food Science, 6(2), 145-156.‏
[84]  Kalac, P. (2009). Recent advances in the research on biological roles of dietary polyamines in man. Journal of Applied Biomedicine, 7(2).
[85]  Fraqueza, M. J., Alfaia, C. M., & Barreto, A. S. (2012). Biogenic amine formation in turkey meat under modified atmosphere packaging with extended shelf life: Index of freshness. Poultry Science, 91(6), 1465-1472. ‏
[86]  Bashiry, M., Mohammadi, A., Hosseini, H., Aeenehvand, S., & Mohammadi, Z. (2014). Determination of Biologically Active Polyamines in Turkey Breast Meat by HPLC and Derivatization with Dansyl Chloride. Nutrition and Food Sciences Research, 1(2), 49-53.
[87]  Vicenzi, M., Di Cosola, R., Ruscica, M., Ratti, A., Rota, I., Rota, F., & Blasi, F. (2020). The liaison between respiratory failure and high blood pressure: evidence from COVID-19 patients. European Respiratory Journal, 56(1). ‏ ‏
[88]  McAfee, A. J., McSorley, E. M., Cuskelly, G. J., Moss, B. W., Wallace, J. M., Bonham, M. P., & Fearon, A. M. (2010). Red meat consumption: An overview of the risks and benefits. Meat science, 84(1), 1-13.‏
[89]  Sergeevna, V. M. (2016). Providing high quality turkey meat today is guaranty health of humanity tomorrow. Science time, (3 (27)), 112-116.‏
[90]  Alexander, E., Rutkow, L., Gudzune, K. A., Cohen, J. E., & McGinty, E. E. (2020). Trends in the healthiness of U.S. fast food meals, 2008–2017. European Journal of Clinical Nutrition, 75(5), 775–781.
[91]  Wardhana, A. K. (2020). Information search trends about sharia: a comparation study between business-industry genre with book-literature genre. Journal of halal product and research (JPHR), 3(1), 35-42. ‏
[92]  Gaitán-Angulo, M., Díaz, J. C., Viloria, A., Lis-Gutiérrez, J. P., & Rodríguez-Garnica, P. A. (2018, June). Bibliometric analysis of social innovation and complexity (Databases Scopus and Dialnet 2007–2017). In International Conference on Data Mining and Big Data (pp. 23-30). Springer, Cham.‏
[93]  Mafruchati, M. (2020). Broiler Chicken vs. Turkey Meat; which One Has the Least Bad Fat to Avoid Positive Case of COVID-19?. Systematic Reviews in Pharmacy, 11(10), 799-802.