Document Type : Review Paper

Authors

Department Of Food Science, College Of Agriculture, University Of Basrah, Iraq.

Abstract

Viruses have a high ability to resist drugs and adapt to all conditions. This has encouraged the scientific community to develop new therapeutic agents by using antioxidant compounds that are naturally present in foods and medicinal plants. Cellular harm caused by free radicals (Reactive Oxygen Spescies ROS) leads to many From the diseases such as diabetes, virus inflammation, impregnability diseases, and digestive diseases. ROS are created during Metabolism of complex chemical compounds. Some plants are characterized  by their antioxidant and antiviral activity which increases their ability to fight viruses, therefore plants with antioxidant capacity protect cells by stopping the oxidation chain reaction, and also can contribute significantly to offsetting oxidative stress caused by viral disease. Essential oils extracted from plants may serve as potential alternative sources for treating diseases caused by certain viruses. This study aims to show the potential effect of natural antioxidants found in some foods, herbs and their essential oils in treating some viral diseases, as well as how they work in boosting immunity and inhibition of free radicals

Keywords

[1]  Yoshizumi, T., Imamura, H., Taku, T., Kuroki, T., Kawaguchi, A., Ishikawa, K., … Koshiba, T. 2017. RLR-mediated antiviral innate immunity requires oxidative phosphorylation activity. Scientific reports, 7(1), 1–12. Retrieved from https://www.nature.com/articles/s41598-017-05808-w
[2] Kennedy, D. A., Lupattelli, A., Koren, G., & Nordeng, H. 2016. Safety classification of herbal medicines used in pregnancy in a multinational study. BMC complementary and alternative medicine, 16(1), 1–9. Retrieved from https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-016-1079-z
[3] Al Ghezi, N. A. S., Al-Mossawi, A. E.-B. H. J., & Al-Rikabi, A. K. J. 2020. Antioxidants Activity of Date Seed Extraction of Some Date Varieties. Medico Legal Update, 20(1), 922–928.
[4] Shahidi, F., & Zhong, Y. 2010. Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology, 112(9), 930–940.
[5] Huh, A. J., & Kwon, Y. J. 2011. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release, 156(2), 128–145.
[6] Shaikh, S., Nazam, N., Rizvi, S. M. D., Ahmad, K., Baig, M. H., Lee, E. J., & Choi, I. 2019. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. International journal of molecular sciences, 20(10), 2468.
[7] Raut, P. K., Kim, S.-H., Choi, D. Y., Jeong, G.-S., & Park, P.-H. 2019. Growth of breast cancer cells by leptin is mediated via activation of the inflammasome: critical roles of estrogen receptor signaling and reactive oxygen species production. Biochemical pharmacology, 161, 73–88.
[8] Nakamura, Y., & Arakawa, H. 2017. Discovery of Mieap‐regulated mitochondrial quality control as a new function of tumor suppressor p53. Cancer science, 108(5), 809–817.
[9] Kim, S.-H., Kim, K.-Y., Yu, S.-N., Park, S.-G., Yu, H.-S., Seo, Y.-K., & Ahn, S.-C. 2016. Monensin induces PC-3 prostate cancer cell apoptosis via ROS production and Ca2+ homeostasis disruption. Anticancer research, 36(11), 5835–5843.
[10] Parham, S., Wicaksono, D. H. B., & Nur, H. 2019. A proposed mechanism of action of textile/Al2O3–TiO2 bimetal oxide nanocomposite as an antimicrobial agent. The Journal of The Textile Institute, 110(5), 791–798.
[11] Iid, I. I., Kumar, S., Shukla, S., Kumar, V., & Sharma, R. 2020. Putative antidiabetic herbal food ingredients: Nutra/functional properties, bioavailability and effect on metabolic pathways. Trends in Food Science & Technology, 97, 317–340.
[12] Saratale, R. G., Benelli, G., Kumar, G., Kim, D. S., & Saratale, G. D. 2018. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environmental Science and Pollution Research, 25(11), 10392–10406.
[13] Parham, S., Nemati, M., Sadir, S., Bagherbaigi, S., Wicaksono, D. H. B., & Nur, H. 2017. In Situ Synthesis of Silver Nanoparticles for Ag‐NP/Cotton Nanocomposite and Its Bactericidal Effect. Journal of the Chinese Chemical Society, 64(11), 1286–1293.
[14] Rainone, F. 2005. Milk thistle. American family physician, 72(7), 1285–1288.
[15] Biedermann, D., Vavříková, E., Cvak, L., & Křen, V. 2014. Chemistry of silybin. Natural product reports, 31(9), 1138–1157.
[16] Wagoner, J., Morishima, C., Graf, T. N., Oberlies, N. H., Teissier, E., Pécheur, E.-I., … Polyak, S. J. 2011. Differential in vitro effects of intravenous versus oral formulations of silibinin on the HCV life cycle and inflammation. PLoS One, 6(1), e16464.
[17] Camini, F. C., da Silva, T. F., da Silva Caetano, C. C., Almeida, L. T., Ferraz, A. C., Vitoreti, V. M. A., … de Brito Magalhães, C. L. 2018. Antiviral activity of silymarin against Mayaro virus and protective effect in virus-induced oxidative stress. Antiviral research, 158, 8–12.
[18] Wagner, H., Hörhammer, L., & Münster, R. 1968. On the chemistry of silymarin (silybin), the active principle of the fruits from Silybum marianum (L.) Gaertn.(Carduus marianus L.). Arzneimittel-Forschung, 18(6), 688–696.
[19] Borah, A., Paul, R., Choudhury, S., Choudhury, A., Bhuyan, B., Das Talukdar, A., … Mohanakumar, K. P. 2013. Neuroprotective potential of silymarin against CNS disorders: insight into the pathways and molecular mechanisms of action. CNS neuroscience & therapeutics, 19(11), 847–853.
[20] Rafieian-Kopaie, M., & Nasri, H. 2012. Silymarin and diabetic nephropathy. Journal of renal injury prevention, 1(1), 3.
[21] Dixit, N., Baboota, S., Kohli, K., Ahmad, S., & Ali, J. 2007. Silymarin: A review of pharmacological aspects and bioavailability enhancement approaches. Indian journal of pharmacology, 39(4), 172.
[22] Devi, K. P. 2019. Milk thistle (Silybum marianum). In Nonvitamin and Nonmineral Nutritional Supplements (pp. 321–325). Elsevier.
[23] Seeff, L. B., Curto, T. M., Szabo, G., Everson, G. T., Bonkovsky, H. L., Dienstag, J. L., … Di Bisceglie, A. M. 2008. Herbal product use by persons enrolled in the hepatitis C Antiviral Long‐Term Treatment Against Cirrhosis (HALT‐C) Trial. Hepatology, 47(2), 605–612.
[24] Alidoost, F., Gharagozloo, M., Bagherpour, B., Jafarian, A., Sajjadi, S. E., Hourfar, H., & Moayedi, B. 2006. Effects of silymarin on the proliferation and glutathione levels of peripheral blood mononuclear cells from β-thalassemia major patients. International immunopharmacology, 6(8), 1305–1310.
[25] Comelli, M. C., Mengs, U., Schneider, C., & Prosdocimi, M. 2007. Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy. Integrative cancer therapies, 6(2), 120–129.
[26] Sardanelli, A. M., Isgrò, C., & Palese, L. L. 2021. SARS-CoV-2 Main Protease Active Site Ligands in the Human Metabolome. Molecules, 26(5), 1409.
[27] Jin, M., Zhao, K., Huang, Q., & Shang, P. 2014. Structural features and biological activities of the polysaccharides from Astragalus membranaceus. International Journal of Biological Macromolecules, 64, 257–266.
[28] Qian, Z. W., Mao, S. J., Cai, X. C., Zhang, X. L., Gao, F. X., Lu, M. F., … Zhuo, Y. A. 1990. Viral etiology of chronic cervicitis and its therapeutic response to a recombinant interferon. Chinese medical journal, 103(8), 647–651.
[29] Xu, X. Y., Li, L.-H., Wu, L., Zhao, C., & Lin, H. 2002. Adjustment effect of Radix Astragalus and Radix Angelicae sinensis on TNF-alpha and bFGF on renal injury induced by ischemia reperfusion in rabbit. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica, 27(10), 771–773.
[30] Jiao, Y., Wen, J., & Yu, X. 1999. Influence of flavonoid of Astragalus membranaceus’s stem and leaves on the function of cell mediated immunity in mice. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi= Chinese journal of integrated traditional and Western medicine, 19(6), 356–358.
[31] Khan, H. M., Raza, S. M., Anjum, A. A., Ali, M. A., & Akbar, H. 2019. Antiviral, embryo toxic and cytotoxic activities of Astragalus membranaceus root extracts. Pakistan journal of pharmaceutical sciences, 32(1).
[32] Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Nur, H., Ismail, A. F., Sharif, S., … Berto, F. 2020. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants, 9(12), 1309.
[33] Abd El Azim, M. H. M., El-Mesallamy, A. M. D., El-Gerby, M., & Awad, A. (2014). Anti-Tumor, antioxidant and antimicrobial and the phenolic constituents of clove flower buds (Syzygium aromaticum). J Microb Biochem Technol, 10, s8-s007.
[34] Bhowmik, D., Kumar, K. P. S., Yadav, A., Srivastava, S., Paswan, S., & Dutta, A. S. 2012. Recent trends in Indian traditional herbs Syzygium aromaticum and its health benefits. Journal of Pharmacognosy and Phytochemistry, 1(1), 13–22.
[35] Tragoolpua, Y., & Jatisatienr, A. 2007. Anti‐herpes simplex virus activities of Eugenia caryophyllus (Spreng.) Bullock & SG Harrison and essential oil, eugenol. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(12), 1153–1158.
[36] Hussein, G., Miyashiro, H., Nakamura, N., Hattori, M., Kakiuchi, N., & Shimotohno, K. 2000. Inhibitory effects of Sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 14(7), 510–516.
[37] Ataee, R., Falahati, A., Ebrahimzadeh, M. A., & Shokrzadeh, M. 2016. Anticonvulsant activities of Sambucus nigra. Eur Rev Med Pharmacol Sci, 20(14), 3123–3126.
[38] Roschek Jr, B., Fink, R. C., McMichael, M. D., Li, D., & Alberte, R. S. 2009. Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry, 70(10), 1255–1261.
[39] Gamblin, S. J., & Skehel, J. J. 2010. Influenza hemagglutinin and neuraminidase membrane glycoproteins. Journal of biological chemistry, 285(37), 28403–28409.
[40] Zakay-Rones, Z., Varsano, N., Zlotnik, M., Manor, O., Regev, L., Schlesinger, M., & Mumcuoglu, M. 1995. Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L.) during an outbreak of influenza B Panama. The Journal of Alternative and Complementary Medicine, 1(4), 361–369.
[41] Ho, G. T. T., Ahmed, A., Zou, Y.-F., Aslaksen, T., Wangensteen, H., & Barsett, H. 2015. Structure–activity relationship of immunomodulating pectins from elderberries. Carbohydrate polymers, 125, 314–322.
[42] Kinoshita, E., Hayashi, K., Katayama, H., Hayashi, T., & Obata, A. 2012. Anti-influenza virus effects of elderberry juice and its fractions. Bioscience, biotechnology, and biochemistry, 120112.
[43] Ho, G. T. T., Zou, Y.-F., Aslaksen, T. H., Wangensteen, H., & Barsett, H. 2016. Structural characterization of bioactive pectic polysaccharides from elderflowers (Sambuci flos). Carbohydrate polymers, 135, 128–137.
[44] Porter, R. S., & Bode, R. F. 2017. A review of the antiviral properties of black elder (Sambucus nigra L.) products. Phytotherapy Research, 31(4), 533–554.
[45] Gray, A. M., Abdel-Wahab, Y. H. A., & Flatt, P. R. 2000. The traditional plant treatment, Sambucus nigra (elder), exhibits insulin-like and insulin-releasing actions in vitro. The Journal of nutrition, 130(1), 15–20.
[46] Zakay-Rones, Z., Thom, E., Wollan, T., & Wadstein, J. 2004. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. Journal of International Medical Research, 32(2), 132–140.
[47] Romay, C. H., Armesto, J., Remirez, D., González, R., Ledon, N., & Garcia, I. 1998. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflammation research, 47(1), 36–41.
[48] Bhat, V. B., & Madyastha, K. M. 2001. Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA. Biochemical and biophysical research communications, 285(2), 262–266.
[49] Hussein, A., Ibrahim, G., Kamil, M., El-Shamarka, M., Mostafa, S., & Mohamed, D. 2021. Spirulina-Enriched Pasta as Functional Food Rich in Protein and Antioxidant. Biointerface Res. Appl. Chem, 11, 14736–14750.
[50] Bashandy, S. A. E., El Awdan, S. A., Ebaid, H., & Alhazza, I. M. 2016. Antioxidant potential of Spirulina platensis mitigates oxidative stress and reprotoxicity induced by sodium arsenite in male rats. Oxidative medicine and cellular longevity, 2016.
[51] Dillon, J. C., Phuc, A. P., & Dubacq, J. P. 1995. Nutritional value of the alga S. platensis. World Rev Nutr Diet, 77, 32–46.
[52]  Khan, Z., Bhadouria, P., & Bisen, P. S. 2005. Nutritional and therapeutic potential of Spirulina. Current pharmaceutical biotechnology, 6(5), 373–379.
[53] Hayashi, T., Hayashi, K., Maeda, M., & Kojima, I. 1996. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. Journal of natural products, 59(1), 83–87.
[54] Rechter, S., König, T., Auerochs, S., Thulke, S., Walter, H., Dörnenburg, H., … Marschall, M. 2006. Antiviral activity of Arthrospira-derived spirulan-like substances. Antiviral research, 72(3), 197–206.
[55] Amin, B., & Hosseinzadeh, H. 2016. Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta medica, 82(01/02), 8–16.
[56] Khader, M., & Eckl, P. M. 2014. Thymoquinone: an emerging natural drug with a wide range of medical applications. Iranian journal of basic medical sciences, 17(12), 950.
[57] Yimer, E. M., Tuem, K. B., Karim, A., Ur-Rehman, N., & Anwar, F. 2019. Nigella sativa L.(black cumin): a promising natural remedy for wide range of illnesses. Evidence-Based Complementary and Alternative Medicine, 2019.
[58] Gautret, P., Lagier, J.-C., Parola, P., Meddeb, L., Mailhe, M., Doudier, B., … Dupont, H. T. 2020. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International journal of antimicrobial agents, 56(1), 105949.
[59]. Barakat, E. M. F., El Wakeel, L. M., & Hagag, R. S. 2013. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World journal of gastroenterology: WJG, 19(16), 2529.
[60] Gahruie, H. H., Eskandari, M. H., Mesbahi, G., & Hanifpour, M. A. 2015. Scientific and technical aspects of yogurt fortification: A review. Food Science and Human Wellness, 4(1), 1–8.
[61] Granato, D., Branco, G. F., Cruz, A. G., Faria, J. de A. F., & Shah, N. P. 2010. Probiotic dairy products as functional foods. Comprehensive reviews in food science and food safety, 9(5), 455–470.
[62] Gouda, A. S., Adbelruhman, F. G., Alenezi, H. S., & Mégarbane, B. 2021. Theoretical benefits of yogurt-derived bioactive peptides and probiotics in COVID-19 patients–a narrative review and hypotheses. Saudi Journal of Biological Sciences.
[63] Bustamante, M., Oomah, B. D., Oliveira, W. P., Burgos-Díaz, C., Rubilar, M., & Shene, C. 2020. Probiotics and prebiotics potential for the care of skin, female urogenital tract, and respiratory tract. Folia microbiologica, 65(2), 245–264.
[64] Dhar, D., & Mohanty, A. 2020. Gut microbiota and Covid-19-possible link and implications. Virus research, 285, 198018.
[65] Prabhurajeshwar, C., & Chandrakanth, K. 2019. Evaluation of antimicrobial properties and their substances against pathogenic bacteria in-vitro by probiotic Lactobacilli strains isolated from commercial yoghurt. Clinical Nutrition Experimental, 23, 97–115.
[66] Abbasiliasi, S., Tan, J. S., Ibrahim, T. A. T., Bashokouh, F., Ramakrishnan, N. R., Mustafa, S., & Ariff, A. B. 2017. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. Rsc Advances, 7(47), 29395–29420.
[67] Patel, U., Gingerich, A., Widman, L., Sarr, D., Tripp, R. A., & Rada, B. 2018. Susceptibility of influenza viruses to hypothiocyanite and hypoiodite produced by lactoperoxidase in a cell-free system. PloS one, 13(7), e0199167.
[68] Newcomb, W. W., & Brown, J. C. 2012. Internal catalase protects herpes simplex virus from inactivation by hydrogen peroxide. Journal of virology, 86(21), 11931–11934.
[69] Muhialdin, B. J., Zawawi, N., Razis, A. F. A., Bakar, J., & Zarei, M. 2021. Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control, 108140.
[70] Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., … Rather, M. A. 2019. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial pathogenesis, 134, 103580.
[71] Navarra, M., Ferlazzo, N., Cirmi, S., Trapasso, E., Bramanti, P., Lombardo, G. E., … Gangemi, S. 2015. Effects of bergamot essential oil and its extractive fractions on SH-SY5Y human neuroblastoma cell growth. Journal of Pharmacy and Pharmacology, 67(8), 1042–1053.
[72] Androutsopoulou, C., Christopoulou, S. D., Hahalis, P., Kotsalou, C., Lamari, F. N., & Vantarakis, A. 2021. Evaluation of essential oils and extracts of rose geranium and rose petals as natural preservatives in terms of toxicity, antimicrobial, and antiviral activity. Pathogens, 10(4), 494.
[73] Sharopov, F. S., Wink, M., Khalifaev, D. R., Zhang, H., Dosoky, N. S., & Setzer, W. N. 2013. Composition and bioactivity of the essential oil of Melissa officinalis L. growing wild in Tajikistan. International Journal of Traditional and Natural Medicines, 2(2), 86–96.
[74] Garozzo, A., Timpanaro, R., Stivala, A., Bisignano, G., & Castro, A. 2011. Activity of Melaleuca alternifolia (tea tree) oil on Influenza virus A/PR/8: Study on the mechanism of action. Antiviral research, 89(1), 83–88.
[75] Garozzo, A., Timpanaro, R., Bisignano, B., Furneri, P. M., Bisignano, G., & Castro, A. 2009. In vitro antiviral activity of Melaleuca alternifolia essential oil. Letters in applied microbiology, 49(6), 806–808.
[76] Usachev, E. V, Pyankov, O. V, Usacheva, O. V, & Agranovski, I. E. (2013). Antiviral activity of tea tree and eucalyptus oil aerosol and vapour. Journal of aerosol science, 59, 22–30.
[77] Allam, S. F., Soudy, B.-N., Hassan, A. S., Ramadan, M. M., & Baker, D. A. 2018. How do mentha plants induce resistance against Tetranychus urticae (Acari: Tetranychidae) in organic farming? Journal of Plant Protection Research, 58(3).
[78] Abou Baker, D. H., Amarowicz, R., Kandeil, A., Ali, M. A., & Ibrahim, E. A. 2021. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus. Journal of Agriculture and Food Research, 4, 100135.
[79] Senthil Kumar, K. J., Gokila Vani, M., Wang, C.-S., Chen, C.-C., Chen, Y.-C., Lu, L.-P., … Wang, S.-Y. 2020. Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells. Plants, 9(6), 770.