Document Type : Research Paper

Authors

1 Bioclimatology and Agricultural Hydraulics Research Division, Algerian National Institute of Agronomic Research (INRAA), CRP, Mahdi Boualem, Baraki, Algiers, Algeria

2 Laboratory of Applied Geology, Department of Soil Science, Superior National School of Agronomics (ENSA), Algiers, Algeria

3 Bioclimatology and Agricultural Hydraulics Research Division, Algerian National Institute of Agronomic Research (INRAA), CRP, Mahdi Boualem, Baraki, Algiers, Algeria.

4 Bioclimatology and Agricultural Hydraulics Research Division, National Institute of Agronomic Research, Algiers, Algeria

Abstract

The primary objective of this study is to use a better method for rainfall mapping in areas with low density rain gauge networks. Secondly, to identify and study hydro-climatic change in the semi-arid high plains of eastern Algeria on the basis of a comparative mapping approach. The latter concerns the annual rainfall map produced by the authors of this paper for the period studied (1986/2016) and the annual rainfall map for the period 1913/1938, prepared by Chaumont and Paquin (1971). The results of this analysis show that isohyets between 300 mm and 350 mm cover a large part of the study area, they occupy an area of 14444 Km², followed by isohyets between 200 mm and 300 mm with an area of 5298 Km². In addition, the comparative analysis between the periods showed that hydro-climatic change was clear for the 200 mm, 300 mm and 400 mm isohyets, whereas there are no major changes for the 500 mm and above isohyets. Data processing based on a combination of statistical and geostatistical analysis (multiple linear regression and kriging) has once again shown the value of taking into account other parameters in the design of rainfall maps, such as geomorphological and geographical parameters.

Keywords

[1]     Domingues Ramos, M. (2002). Analyse de la pluviométrie sous des systèmes nuageux convectifs, Doct. Thesis, 165 p.
[2]     Koteswaram, P. (1974). Climat et météorologie. Edit. U.N.E.S.C.O. Paris. 29-52.
[3]     Slimani, M., Cudennec, C., Feki, H. (2007). Structure of the rainfall gradient in the Sahara transition in Tunisia: geographical determinants and seasonality. Hydrol Sci J, 52(6):1088–1102. doi:10.1623/hysj.52.6.1088.
[5]     Gachon, P., Dibike, YB. (2007). Temperature change signals in northern Canada: convergence of statistical downscaling results using two driving GCMs. Int J climatol, 27:1623-1641. https://doi.org/10.1002/joc.1582
[6]     Dibike, YB., Coulibaly, P. (2006). Temporal neural networks for downscaling climat variability and extremes. Neural Networs, 19 (2): 135-144. doi: 10.1016/j.neunet.2006.01.003
[7]     Lloyd, CD. (2005). Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J Hydol, 308: 128-150
[8]     Naoum, S., Tsanis, IK. (2004). A multiple linear regression GIS module using spatial variables to model georographic rainfall. J Hydroinf, 06 (1): 39–56
[9]     Brunsdon, C., Mcclatchey, J., Unwin, DJ. (2001). Spatial variations in the average rainfall–altitude relationship in Great Britain: an approach using geographically weighted regression. Int J Climatol, 21: 455–466
[10]  Goovaerts, P. (2001).Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol, 228:11–129
[11]  Smadhi, D.,  Zella, L., Bachir, H. (2017). Droughts in semi-arid cereal regions of Algeria. Journal of Applied and Fundamental Sciences, 09(02): 1063-1073. doi:10.4314/jfas.v9i2.29
[12]  Myoung-Jin, U-M., Hyeseon, Y., Chang-Sam, J., Jun-Haeng, H. (2012). Factor analysis and multiple regression between topography and precipitation on Jeju Island, Korea. J Hydrol, 410: 189–203. https://doi.org/10.1002/joc.4854
[13]  Lloyd, CD. (2010). Multivariate Interpolation of Monthly Precipitation Amount in the United Kingdom. geoENV VII. Geostatistics for Environmental Applications, Quantitative Geology and Geostatistics 16. doi 10.1007/978-90-481-2322-33
[14]  Ahrens, B. (2006). Distance in spatial interpolation of daily rain gauge data. Hydrol Earth Syst Sci, 10: 197–208. www.hydrol-earth-syst-sci.net/10/197/2006/
[15]  Prise, DT., McKenney, DW., Nalder, IA., Hutchinson, MF., Kesteven, JL. (2000). A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agri Forest Meteo, 101: 81-94. https://doi.org/10.1016/S0168-1923(99)00169-0
[16]  Sheather, SJ. (2009).A modern approach to regression with R, chapter 5: multiple linear regression. springer Science. Business Media, 125–149
[17]  Cook, ER., Briffa, K-R., Jones, PD. (1994). Spatial regression methods in dendroclimatology—a review and comparison of 2 techniques. Int J Climatol, 14: 379–402
[18]  Hay, L., Viger, R., Mccabe, G. (1998). Precipitation interpolation in mountainous regions using multiple linear regressions. Hydrol Water Resour Ecol Headwaters, 248: 33–38
[19]  Bachir, H., Semar, A., Mazari, A. (2016). Statistical and Geostatistical analysis related to geographical parameters for spatial and temporal representation of rainfall in semi-arid environments the Case of Algeria. Arab J Geos, 9 (7): 486-498. doi: 10.1007/s12517-016-2505-8 
[20]  Queney, P. (1943). Les fronts atmosphériques permanents et leurs perturbations. (Travaux de l'Institut de Météorologie, fasc. 3. Alger, 1-6.
[21]  Queney, P. (1937). Le régime pluviométrique de l'Algérie et son évolution depuis 1850. Météorologie. 1937: 427-440.
[22]  Seltzer, P. (1948). Le climat de l’Algérie. Inst. Météorol. Phys. Globe, Alger, 1948: 219p.
[23]  Touazi, M., Laborde, JP., Bhiry, N. (2004). Modelling rainfall-discharge at a mean inter-yearly scale in northern Algeria. J Hydro, 296: 179-191. doi:10.1016/j. jhydrol.2004.03.030
[24]  Chaumont et Paquin, C. (1971). Carte pluviométrique de l’Algérie du Nord, échelle 1/500 000" (4 feuilles et notice), Société de l’Histoire Naturelle de Afrique du Nord, Alger
[25]  Meddi, M & Toumi, S. (2013). Study of the interannual rainfall variability in northern Algeria. L J E E, 23: 40-59
[26]  Chenafi, H., Bouzerzour, H., Aidaoui, A., Saci, A. (2006). Yield Response of Durum Wheat ( Triticum durum Desf.) Cultivar Waha to Deficit Irrigation under Semi Arid Growth Conditions, 854-860, doi: 10.3923/ajps.2006.854.860
[27]  Bahlouli, F., Bouzerzour, H., Benmahammed, A. (2008). Effets de la vitesse et de la durée du remplissage du grain ainsi que de l’accumulation des assimilats de la tige dans l’élaboration du rendement du blé dur (Triticum durum Desf.) dans les conditions de culture des hautes plaines orientales d’Algérie. Biotechnol Agron Soc Environ, 1: 31-39.
[28]  Pannatier, Y. (1996). Variowin-software for spatial data analysis in 2D. Springer Verlag, notice: 91p
[30]  Arnaud, M & Emery, X. (2000). Estimation et interpolation spatiale, Méthodes déterministes et méthodes géostatistiques, Hermes science Europe, 221 p.